Cloud-native Container Networking
Orchestration at Cloud Scale, Data Plane with Terabit Performance
Cloud-native Container Networking
Using Best of Breed to Get Kick-Ass Cloud Networking Platform

- **Cloud-native Networking Platform**
 - Network as a Service
 - Network-as-a-Service

- **Production-Grade Container Orchestration**
 - Most portable on the planet
 - Superior extensibility and self-healing

- **Cloud-native NFV Orchestration**
 - Scalability, performance and agility
 - Marries K8s with NFV topologies

- **Fast Data Input/Output**
 - Most efficient on the planet
 - Top performance, flexibility and extensibility
Production-Grade Container Orchestration
For Native Cloud Network Services

- **PORTABILITY**
 - Public, private, hybrid, multi-cloud.

- **EXTENSIBILITY**
 - Modular, pluggable, hookable, composable.

- **SELF-HEALING**
 - Automatic: placement, restart, replication, scaling.

- **CLOUD SERVICES**
 - Foundation for cloud native network services

- **LINUX FOUNDATION**
 - Open source collaborative project in Linux Foundation
Cloud-native NFV Orchestration
For Native Cloud Network Services

Solid Foundations
- Kubernetes for automated deployment and lifecycle of containers, FD.io for efficient and performant data plane.

Scalability and Self-healing
- SCALABILITY and SELF-HEALING
 Follows Kubernetes scale and self-healing principles.

Flexible and Extensible
- SOFTWARE DEFINED NETWORKING
 Software programmable, extendable and flexible.

Cloud Native
- CLOUD SERVICES
 Foundation for cloud native network services

Open Source
- LINUX FOUNDATION
 Open source collaborative project in Linux Foundation
FD.io – Fast Data Input/Output
For Native Cloud Network Services

EFFICIENCY
The most efficient software data plane Packet Processing on the planet

PERFORMANCE
FD.io on x86 servers outperforms specialized packet processing HW

RICH NFV FUNCTIONALITY
Switching, routing, overlays, crypto, security, the list is very long, very network feature rich.

CLOUD SERVICES
Foundation for cloud native network services

LINUX FOUNDATION
Open source collaborative project in Linux Foundation

- Superior Performance
- Rich NFV Functionality
- Cloud Native
- Open Source
- Most Efficient on the Planet
Cloud-native Container Networking
For Native Cloud Network Services

- Kubernetes: Production-Grade Container Orchestration
- LIGATO: Cloud-native NFV Orchestration
- FD.io: Containerized Fast Data Input/Output

Enabling Production-Grade Native Cloud Network Services at Scale

Service Policy, Service Topology, Lifecycle

Production-Grade Container Orchestration

Network Function and Network Topology Orchestration

Containerized Network Data Plane

Cloud-native NFV Orchestration

Container Networking
Calico
Contiv Netmaster

Network Function and Network Topology Orchestration

Containerized Network Data Plane

Networking Plugin
Calico
Contiv Netmaster

Kubelet

Agent: Contiv Agent
FD.io VPP Agent
Agent: CNF
Agent: CNF Agent
Cloud-native Container Networking
Putting It All Together Now – The System Design

Functional Layered Diagram

Production-Grade Container Orchestration
- Kubernetes
- API Proxies

Network Function and Network Topology Orchestration
- SFC Controller

Containerized Network Data Plane
- Networking Plugin
- CNI
- Kubelet

Implementation Diagram as Demonstrated

Control and Management Plane
- Applications
- SFC Controller
- Tools (e.g., agentctl)

Inter-Process Communication
- Data Store
- Message Bus

Containerized Network Data Plane
- GoAGENT
- VPP eSwitch
- VPP CNF

Containers Lifecycle Orchestration

Putting It All Together Now – The System Design

- Cloud-native Container Networking
- Container Networking
- Networking Plugin
- CNI
- Kubelet

- Functional Layered Diagram
- Implementation Diagram as Demonstrated

- Production-Grade Container Orchestration
- Network Function and Network Topology Orchestration
- Containerized Network Data Plane

- Control and Management Plane
- Inter-Process Communication
- Containerized Network Data Plane
Demonstration

Prepare System Environment
1. Install Container orchestration infrastructure
2. Define Kubernetes PODs with Docker Containers in .yaml files

Deploy Network Services
3. Deploy defined Container PODs with Kubernetes
4. Deploy network topology with SFC_Controller via ETCD
5. Agents configure their local VPPs containerized in K8s PODs

Verify Service is Up
6. Verify Containerized network topology is configured correctly

Benchmark for Service Acceptance
7. Benchmark Containerized network topology
Demonstration – Containerized NFV Scenarios

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>memif</td>
<td>scenario1</td>
<td>scenario2</td>
<td>scenario3</td>
</tr>
<tr>
<td>af_packet</td>
<td>scenario4</td>
<td>scenario5</td>
<td>scenario6</td>
</tr>
</tbody>
</table>

I’m demonstrated
I’m not demonstrated