
Tools for large-scale collection &
analysis of source code repositories
OPEN SOURCE GIT REPOSITORY COLLECTION PIPELINE

Alexander Bezzubov source{d}

➔ committer & PMC @ apache zeppelin

➔ engineer @source{d}

➔ startup in Madrid

➔ builds the open-source components that enable large-scale
code analysis and machine learning on source code

Intro

motivation & vision

MOTIVATION: WHY COLLECTING SOURCE CODE

VISION:

➔ Academia: material for research in IR/ML/PL communities

➔ Industry: fuel for building data-driven products (i.e for sourcing candidates for hiring)

➔ OSS collection pipeline

➔ Use it to build public datasets industry and academia

➔ Use Git as “source of truth”, the most popular VCS

➔ A crawler (find URLs, git clone them), Distributed storage (FS, DB), Parallel processing framework

 custom, in Golang standard, Apache HDFS + Postgres custom, library for Apache Spark

Tech Stack

CoreOS

infrastructure

 Rovers

collection

storage

processing

analysis

K8s

go-git

HDFS

śiva

Apache Spark

source{d} Engine

Bblfsh

Enry

tech stack

Borders

CoreOS

infrastructure

 Rovers

collection

storage

processing

analysis

K8s

go-git

HDFS

śiva

Apache Spark

source{d} Engine

Bblfsh

Enry

tech stack

Borders

infrastructure

➔ Dedicated cluster (cloud becomes prohibitively expensive for storing ~100sTb)

➔ CoreOS provisioned on bare-menta \w Terraform

➔ Booting and OS configuration Matchbox and Ignition

➔ K8s deployed on top of that

More details at talk at CfgMgmtCamp

http://cfgmgmtcamp.eu/schedule/terraform/CoreOS.html

http://cfgmgmtcamp.eu/schedule/terraform/CoreOS.html

CoreOS

infrastructure

 Rovers

collection

storage

processing

analysis

K8s

go-git

HDFS

śiva

Apache Spark

source{d} Engine

Bblfsh

Enry

tech stack

Borders

collection

➔ Rovers: search for Git repository URLs

➔ Borges: fetching repository \w “git pull”

➔ Git storage format & protocol implementation

➔ Optimize for on-disk size: forks that share history, saved together

go-git to talk Git Last year had a talk at FOSDEM

https://archive.fosdem.org/2017/schedule/event/go_git/

https://archive.fosdem.org/2017/schedule/event/go_git/

GIT LIBRARY FOR GO

• need to clone and analyze tens of millions of
repositories with our core language Go

• be able to do so in memory, and by using custom
filesystem implementations

• easy to use and stable API for the Go community

• used in production by companies, e.g.: keybase.io

motivation

go-git A HIGHLY EXTENSIBLE IMPLEMENTATION OF GIT IN GO

GO-GIT IN ACTION

example

• the most complete git library for any language after
libgit2 and jgit

• highly extensible by design

• idiomatic API for plumbing and porcelain commands

• 2+ years of continuous development

• used by a significant number of open source projects

PURE GO SOURCE CODE

features

example mimicking `git clone` using go-git:

usage

• https://github.com/src-d/go-git

• go-git presentation at FOSDEM 2017

• go-git presentation at Git Merge 2017

• compatibility table of git vs. go-git

• comparing git trees in go

resources
YOUR NEXT STEPS

TRY IT YOURSELF

installation
$ go get -u gopkg.in/src-d/go-git.v4/...

• list of more go-git usage examples

// Clone the repo to the given directory

url := "https://github.com/src-d/go-git",
_, err := git.PlainClone(
 "/tmp/foo", false,
 &git.CloneOptions{
 URL: url,
 Progress: os.Stdout,
 },
)

CheckIfError(err)

output:

Counting objects: 4924, done.
Compressing objects: 100% (1333/1333), done.
Total 4924 (delta 530), reused 6 (delta 6),
pack-reused 3533

https://keybase.io/blog/encrypted-git-for-everyone
https://godoc.org/gopkg.in/src-d/go-git.v4
https://github.com/src-d/go-git
https://archive.fosdem.org/2017/schedule/event/go_git/
https://www.youtube.com/watch?v=_gyLZVjekbo&feature=youtu.be&t=1332
https://github.com/src-d/go-git/blob/master/COMPATIBILITY.md
https://blog.sourced.tech/post/difftree/
https://github.com/src-d/go-git/tree/master/_examples

CODE COLLECTION AT SCALE

• collection and storage of repositories at large scale

• automated process

• optimal usage of storage

• optimal to keep repositories up-to-date with the origin

motivation

rovers & borges LARGE SCALE CODE REPOSITORY COLLECTION AND STORAGE

KEY CONCEPT

• set up and run rovers

• set up borges

• run borges producer

• run borges consumer

architecture

• distributed system similar to a search engine

• src-d/rovers retrieves URLs from git hosting providers
via API, plus self-hosted git repositories

• src-d/borges producer reads URL list, schedules fetching

• borges consumer fetches and pushes repo to storage

• borges packer also available as a standalone command,
transforming repository urls into siva files

• stores using src-d/śiva repository storage file format

• optimized for storage and keeping repos up-to-date

SEEK, FETCH, STORE

architecture

• rooted repositories are standard git repositories that
store all objects from all repositories that share a
common history, identified by same initial commit:

• a rooted repository is saved in a single śiva file

• updates stored in concatenated siva files: no need to
rewriting the whole repository file

• distributed-file-system backed, supports GCS & HDFS

usage

• https://github.com/src-d/rovers

• https://github.com/src-d/borges

• https://github.com/src-d/go-siva

• śiva: Why We Created Yet Another Archive
Format

resources
YOUR NEXT STEPS

SETUP & RUN

https://github.com/src-d/rovers#installation
https://github.com/src-d/borges#setting-up-borges
https://github.com/src-d/borges#producer
https://github.com/src-d/borges#consumer
https://github.com/src-d/rovers
https://github.com/src-d/borges
https://blog.sourced.tech/post/siva/
https://github.com/src-d/rovers
https://github.com/src-d/borges
https://github.com/src-d/go-siva
https://blog.sourced.tech/post/siva/
https://blog.sourced.tech/post/siva/

CoreOS

infrastructure

 Rovers

collection

storage

processing

analysis

K8s

go-git

HDFS

śiva

Apache Spark

source{d} Engine

Bblfsh

Enry

tech stack

Borders

storage

➔ Metadata: PostgreSQL

➔ Built small type-safe ORM for Go<->Postgres

https://github.com/src-d/go-kallax

➔ Data: Apache Hadoop HDFS

➔ Custom (seekable, appendable) archive format: Siva 1 RootedRepository <-> 1 Siva file

https://github.com/src-d/go-kallax

SMART REPO STORAGE

• store a git repository in a single file

• updates possible without rewriting the whole file

• friendly to distributed file systems

• seekable to allow random access to any file position

motivation

śiva SEEKABLE INDEXED BLOCK ARCHIVER FILE FORMAT

SIVA FILE BLOCK SCHEMA

architecture

CHARACTERISTICS

• src-d/go-siva is an archiving format similar to tar or zip

• allows constant-time random file access

• allows seekable read access to the contained files

• allows file concatenation given the block-based design

• command-line tool + implementations in Go and Java

architecture usage

• https://github.com/src-d/go-siva

• śiva: Why We Created Yet Another Archive
Format

resources
YOUR NEXT STEPSAPPENDING FILES

pack into siva file
$ siva pack example.siva qux

append into siva file
$ siva pack --append example.siva
bar

list siva file contents
$ siva list example.siva
Sep 20 13:04 4 B qux -rw-r--r--
Sep 20 13:07 4 B bar -rw-r--r--

https://github.com/src-d/go-siva
https://github.com/src-d/go-siva
https://blog.sourced.tech/post/siva/
https://blog.sourced.tech/post/siva/

Core OS

infrastructure

 Rovers

collection

storage

processing

analysis

K8s

go-git

HDFS

śiva

Apache Spark

source{d} Engine

Bblfsh

Enry

tech stack

Borders

processing

Apache Spark
➔ For batch processing, SparkSQL

Engine

➔ Library, \w custom DataSource implementation GitDataSource

➔ Read repositories from Siva archives in HDFS, exposes though DataFrame

➔ API for accessing refs/commits/files/blobs

➔ Talks to external services though gRPC for parsing/lexing, and other analysis

YOUR NEXT STEPS

UNIFIED SCALABLE PIPELINE

• easy-to-use pipeline for git repository analysis

• integrated with standard tools for large scale data analysis

• avoid custom code in operations across millions of repos

motivation

engine UNIFIED SCALABLE CODE ANALYSIS PIPELINE ON SPARK

APACHE SPARK DATAFRAME

architecture

• listing and retrieval of git repositories

• Apache Spark datasource on top of git repositories

• iterators over any git object, references

• code exploration and querying using XPath expressions

• language identification and source code parsing

• feature extraction for machine learning at scale

PREPARATION

architecture

usage sample

• https://github.com/src-d/engine

• Early example jupyter notebook:
https://github.com/src-d/spark-api/blob/maste
r/examples/notebooks/Example.ipynb

resources

EngineAPI(spark, 'siva',
 '/path/to/siva-files')
.repositories
.references
.head_ref
.files
.classify_languages()
.extract_uasts()
.query_uast('//*[@roleImport and
@roleDeclaration]',
 'imports')
.filter("lang = 'java'")
.select('imports',
 'path',
 'repository_id')
.write
.parquet("hdfs://...")

• extends Apache SparkSQL

• git repositories stored as siva files or standard
repositories in HDFS

• metadata caching for faster lookups over all the
dataset.

• fetches repositories in batches and on demand

• available APIs for Spark and PySpark

• can run either locally or in a distributed cluster

https://github.com/src-d/engine
https://github.com/src-d/spark-api/blob/master/examples/notebooks/Example.ipynb
https://github.com/src-d/spark-api/blob/master/examples/notebooks/Example.ipynb

CoreOS

infrastructure

 Rovers

collection

storage

processing

analysis

K8s

go-git

HDFS

śiva

Apache Spark

source{d} Engine

Bblfsh

Enry

tech stack

Borders

analysis

Enry
➔ Programming language identification

➔ Re-write of github/linguist in Golang, ~370 langs

Project Babelfish

➔ Distributed parser infrastructure for source code analysis

➔ Unified interface though gRPC to native parsers in containers: src -> uAST

Talk in Source Code Analysis devRoom
Room: UD2.119, Sunday, 12:40
https://fosdem.org/2018/schedule/event/code_babelfish_a_universal_code_parser_for_source_c
ode_analysis/

https://fosdem.org/2018/schedule/event/code_babelfish_a_universal_code_parser_for_source_code_analysis/
https://fosdem.org/2018/schedule/event/code_babelfish_a_universal_code_parser_for_source_code_analysis/

• enry speed
improvement over
linguist when
applied to
linguist/samples
folder file samples

usable in Go as a native library, in Java as
shared library and as a CLI tool.

LANG DETECTION AT SCALE

• need to detect programming languages of every file in
a git repository

• initially used github/linguist, but needed more
performance for large scale applications

• keep compatibility with the original linguist project

motivation

enry A FASTER FILE PROGRAMMING LANGUAGE DETECTOR

benchmarks

COMPATIBLE AND FLEXIBLE

• linguist as source of information on language detection

• ignores binary and vendored files

• command line tool mimics the original linguist one

• can be used in Go (native library) or Java (shared library)

architecture

usage

• https://github.com/src-d/enry

• enry: detecting languages

• benchmark methodology and results

resources
YOUR NEXT STEPS

• src-d/enry is at least 4x faster than linguist

• 5x (larger repos) to 20x faster (smaller repos)

GO FASTER

• additional info on benchmarking enry

$ enry /path/to/src-d/go-git
98.28% Go
0.69% Shell
0.34% Makefile
0.34% Markdown
0.34% Text

https://github.com/github/linguist/tree/master/samples
https://github.com/github/linguist
https://github.com/src-d/enry
https://blog.sourced.tech/post/enry/
https://github.com/src-d/enry/tree/master/benchmarks
https://github.com/src-d/enry
https://github.com/src-d/enry#benchmarks

UNIVERSAL CODE ANALYSIS

• was born as a solution for massive code analysis

• parsing single files in any programming language

• analyze all source code from all repositories in the world

• analyze many languages using a shared
structure/format

motivation

babelfish A SELF-HOSTED SERVER FOR UNIVERSAL SOURCE CODE PARSING

CONTAINER-BASED

architecture

• AST-based diff'ing. Understanding changes made to
code with finer-grained granularity.

• extract features for Machine Learning on Source Code.

• statistics of language features

• detecting similar coding patterns across languages

POWERFUL OPPORTUNITIES

use cases

• language drivers as the main building blocks

• parsing service via one driver per language

• language drivers can be written in any language
and are packaged as standard Docker containers

• containers are executed by the babelfish server
in a specific runtime built on-top of libcontainer.

usage

• https://github.com/bblfsh

• Babelfish documentation

• announcing Babelfish

• Babelfish presentation

• join the Babelfish community

resources
YOUR NEXT STEPSUNIVERSAL AST

architecture

• UAST is a universal (normalized and annotated)
form of Abstract Syntax Tree (AST)

• language-independent annotations (roles) such as
Expression, Statement, Operator, Arithmetic, etc.

• can be easily ported to many languages using
gogo/protobuf

TRY BABELFISH ONLINE

• or run babelfish server & dashboard locally:

$ docker run --privileged -d -p \
 9432:9432 --name bblfsh \
 bblfsh/server

$ docker run -p 8080:80 --link \
 bblfsh bblfsh/dashboard \
 --bblfsh-addr bblfsh:9432

https://github.com/opencontainers/runc/tree/master/libcontainer
https://github.com/bblfsh
https://doc.bblf.sh/
https://blog.sourced.tech/post/announcing_babelfish/
https://docs.google.com/a/sourced.tech/presentation/d/1X3cWYq8CkI0HKDrkCq7s2hrMTneFlaAcKqFQplAN1vA/edit?usp=drivesdk
https://doc.bblf.sh/community.html
https://doc.bblf.sh/uast/specification.html
https://godoc.org/github.com/bblfsh/sdk/uast#Role
https://github.com/gogo/protobuf
http://dashboard.bblf.sh

CoreOS

infrastructure

 Rovers

collection

storage

processing

analysis

K8s

go-git

HDFS

śiva

Apache Spark

source{d} Engine

Bblfsh

Enry

tech stack

Borders

Further directions

further directions

INFRASTRUCTURE
➔ Persistent storage in k8s on bare-metal cluster

COLLECTION

STORAGE

PROCESSING

ANALYSIS

➔ Explore SEDA architecture, to dynamically saturate throughput

➔ Better splittable Git object storage format (\w delta-encoding, etc)

➔ Distributed Indexes to speed up common Apache Spark queries

➔ AST-diff, cross-language abstractions on top of ASTs

thank you.

