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Remember Janus?

• A door between the communications past and future
• Legacy technologies (the “past”)
• WebRTC (the “future”)

Janus
General purpose, open source WebRTC gateway
• https://github.com/meetecho/janus-gateway
• Demos and documentation: https://janus.conf.meetecho.com
• Community: https://groups.google.com/forum/#!forum/meetecho-janus

https://github.com/meetecho/janus-gateway
https://janus.conf.meetecho.com
https://groups.google.com/forum/#!forum/meetecho-janus


A quick recap: modular architecture

• The core only implements the WebRTC stack
• JSEP/SDP, ICE, DTLS-SRTP, Data Channels, ...

• Plugins expose Janus API over different “transports”
• Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT

• “Application” logic implemented in plugins too
• Users attach to plugins via the Janus core
• The core handles the WebRTC stuff
• Plugins route/manipulate the media/data

• Plugins can be combined on client side as “bricks”
• Video SFU, Audio MCU, SIP gatewaying, broadcasting, etc.



“Pointers, pointers, everywhere...”

• Plugins a very powerful way to extend Janus, but...
• ... everything in Janus is written in C! (well, except the web demos of course...)

• May be troublesome for some users to write their own (when really needed)



Let’s have a look at the Plugin API (1)

• Plugin initialization and information

• init(): called when plugin is loaded

• destroy(): called when Janus is shutting down

• get_api_compatibility(): must return JANUS_PLUGIN_API_VERSION

• get_version(): numeric version identifier (e.g., 3)

• get_version_string(): verbose version identifier (e.g., “v1.0.1”)

• get_description(): verbose description of the plugin (e.g., “This is my awesome plugin
that does this and that”)

• get_name(): short display name for your plugin (e.g., “My Awesome Plugin”)

• get_author(): author of the plugin (e.g., “Meetecho s.r.l.”)

• get_package(): unique package identifier for your plugin (e.g., “janus.plugin.myplugin”)



Let’s have a look at the Plugin API (2)

• Sessions management (callbacks invoked by the core)

• create_session(): a user (session+handle) just attached to the plugin
• handle_message(): incoming message/request (with or without a JSEP/SDP)
• setup_media(): PeerConnection is now ready to be used
• incoming_rtp(): incoming RTP packet
• incoming_rtcp(): incoming RTCP message
• incoming_data(): incoming DataChannel message
• slow_link(): notification of problems on media path
• hangup_media(): PeerConnection has been closed (e.g., DTLS alert)
• query_session(): called to get plugin-specific info on a user session
• destroy_session(): existing user gone (handle detached)



Let’s have a look at the Plugin API (3)

• Interaction with the core (methods invoked by the plugin)

• push_event(): send the user a JSON message/event (with or without a JSEP/SDP)

• relay_rtp(): send/relay the user an RTP packet

• relay_rtcp(): send/relay the user an RTCP message

• relay_data(): send/relay the user a DataChannel message

• close_pc(): close the user’s PeerConnection

• end_session(): close a user session (force-detach core handle)

• events_is_enabled(): check whether the event handlers mechanism is enabled

• notify_event(): notify an event to the registered and subscribed event handlers



Sequence diagrams (sessions mgmt)
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Writing a plugin in a different language

• All the above methods and callbacks need to be implemented in C

• The core loads a shared module, and the core is written in C

• That said, does the logic really need to be written in C too?

• As long as stubs are C, the core is happy
• What these stubs do and return can be done in a different way

• All we need is provide hooks and bindings in C, and delegate the logic

Exactly what we did with the Lua plugin!
• https://github.com/meetecho/janus-gateway/pull/1033
• http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

https://github.com/meetecho/janus-gateway/pull/1033
http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Writing a plugin in a different language

• All the above methods and callbacks need to be implemented in C

• The core loads a shared module, and the core is written in C

• That said, does the logic really need to be written in C too?

• As long as stubs are C, the core is happy
• What these stubs do and return can be done in a different way

• All we need is provide hooks and bindings in C, and delegate the logic

Exactly what we did with the Lua plugin!
• https://github.com/meetecho/janus-gateway/pull/1033
• http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

https://github.com/meetecho/janus-gateway/pull/1033
http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Writing a plugin in a different language

• All the above methods and callbacks need to be implemented in C

• The core loads a shared module, and the core is written in C

• That said, does the logic really need to be written in C too?

• As long as stubs are C, the core is happy
• What these stubs do and return can be done in a different way

• All we need is provide hooks and bindings in C, and delegate the logic

Exactly what we did with the Lua plugin!
• https://github.com/meetecho/janus-gateway/pull/1033
• http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

https://github.com/meetecho/janus-gateway/pull/1033
http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Writing a plugin in a different language

• All the above methods and callbacks need to be implemented in C

• The core loads a shared module, and the core is written in C

• That said, does the logic really need to be written in C too?

• As long as stubs are C, the core is happy
• What these stubs do and return can be done in a different way

• All we need is provide hooks and bindings in C, and delegate the logic

Exactly what we did with the Lua plugin!
• https://github.com/meetecho/janus-gateway/pull/1033
• http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

https://github.com/meetecho/janus-gateway/pull/1033
http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Janus Lua plugin: the basics

• Conceptually simple: C plugin, but with an embedded Lua state machine
• Load a user-provided Lua script when initializing the plugin
• Implement plugin callbacks in C, and have them call a Lua function
• Implement core methods as Lua functions in C, that the Lua script can invoke
• Track users/sessions via a unique ID that the C and Lua code share

• In theory, everything works (simple C↔Lua proxy)
• The core sees a C plugin, but logic is handled in Lua

• In practice, that’s not enough...

1 Lua is single threaded (how to do things really asynchronously?)
2 Handling RTP in Lua space would kill performance
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Hooks and bindings (1)

• Plugin initialization and information

C Lua
init() −→ init()
destroy() −→ destroy()
get_api_compatibility() −→ not needed
get_version() −→ getVersion()1

get_version_string() −→ getVersionString()1

get_description() −→ getDescription()1

get_name() −→ getName()1

get_author() −→ getAuthor()1

get_package() −→ getPackage()1

1Not really needed, so optional



Hooks and bindings (2)

• Sessions management (callbacks invoked by the core)

C Lua
create_session() −→ createSession()
handle_message() −→ handleMessage()
setup_media() −→ setupMedia()
incoming_rtp() −→ incomingRtp()2

incoming_rtcp() −→ incomingRtcp()2

incoming_data() −→ incomingData()2

slow_link() −→ slowLink()
hangup_media() −→ hangupMedia()
query_session() −→ querySession()
destroy_session() −→ destroySession()

2Not the right way... more on this later!



Hooks and bindings (3)

• Interaction with the core (methods invoked by the plugin)

C Lua
push_event() ←− pushEvent()
relay_rtp() ←− relayRtp()3

relay_rtcp() ←− relayRtcp()3

relay_data() ←− relayData()3

close_pc() ←− closePc()
end_session() ←− endSession()
events_is_enabled() ←− eventsIsEnabled()4

notify_event() ←− notifyEvent()

3Not the right way... more on this later!
4Not really needed, so optional



Example of hooks and bindings



Asynchronous logic in the Lua plugin

• We’ve seen how asynchronous events are heavily used by plugins
• Asynchronous message response, negotiations, etc.
• Most out-of-the-box Janus plugins are thread based

• Lua is single threaded, though...
• Coroutines can be seen as threads, but they aren’t
• Access to the Lua state isn’t thread safe either

Solution: a C “scheduler”
A dedicated thread in the C code of the plugin acts as scheduler
• The Lua script queues tasks, and “pokes” the scheduler via pokeScheduler()

• pokeScheduler() is implemented in C, and wakes the scheduler (queue)
• The C scheduler calls resumeScheduler() in Lua as a coroutine
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Scheduler example: asynchronous reply
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Timed callbacks in the Lua plugin

• pokeScheduler() and resumeScheduler() are great but have limits
• No arguments can be passed to the scheduler
• You need to keep track of tasks yourself
• The resumeScheduler() function is called as soon as possible

• You may want to trigger a callback (with a parameter?) after some time instead
• e.g., “call secondsPassed(5) in 5 seconds”

Solution: a new timeCallback function as a C hook
A timed source in the C code of the plugin acts as triggerer
• The Lua script times a callback via timeCallback()

• timeCallback() is implemented in C, and creates a timed source
• The source fires and calls the specified callback in Lua as a coroutine
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What about RTP/RTCP/data?

• As we pointed out, handling data in Lua drags performance down
• While hooks are there, there’s a cost in going from C to Lua and viceversa
• Lua state is single threaded, meaning relaying would have a bottleneck

• Arguably this is more of an issue for RTP, less so for RTCP and data
• ... unless RTCP and data messages are very frequent too

Solution: only configuring routing in Lua (actual relaying still in C)

The C code routes the media according to dynamic changes coming from Lua
• addRecipient() and removeRecipient() dictate who receives user’s media
• configureMedium() opens/closes valves for outgoing/incoming media
• Helper methods (setBitrate(), sendPli(), etc.) do the rest
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Routing media (SFU example)



A few examples: EchoTest clone



Something trickier: VideoRoom clone



VideoCall clone: a tutorial

http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Astricon 2017 Dangerous Demo

https://gist.github.com/lminiero/9aeeda1be501fb636cad0c8057c6e076

https://gist.github.com/lminiero/9aeeda1be501fb636cad0c8057c6e076


One more cool example... Chatroulette!

https://github.com/lminiero/fosdem18-januslua
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What to do next?

• Integrate advanced features recently added to master
• RTP injection/forwarding, simulcasting, VP9 SVC, ...

• General improvements may be needed once it’s used more
• Based on refcount branch, which is experimental itself

• Do Lua-based Transport plugins and Event Handlers make any sense?
• They’re plugins (shared objects) too, after all...

• Why not, write new plugins for other programming languages!
• Most hooks are already there, after all, we only need bindings
• A potential “candidate”: JavaScript (e.g., with http://duktape.org/)

Help us improve this!
• Play with it, more testing is important
• Write your own applications, or help expand the Lua plugin itself!

http://duktape.org/
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Thanks! Questions? Comments?

Get in touch!
• https://twitter.com/elminiero
• https://twitter.com/meetecho
• http://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
http://www.meetecho.com

