
Writing a Janus plugin in Lua
C can be a scary world, let us come to the rescue!

Lorenzo Miniero
@elminiero

FOSDEM 2018 Real Time devroom
4th February 2018, Brussels

https://twitter.com/elminiero


Remember Janus?

• A door between the communications past and future
• Legacy technologies (the “past”)
• WebRTC (the “future”)

Janus
General purpose, open source WebRTC gateway
• https://github.com/meetecho/janus-gateway
• Demos and documentation: https://janus.conf.meetecho.com
• Community: https://groups.google.com/forum/#!forum/meetecho-janus

https://github.com/meetecho/janus-gateway
https://janus.conf.meetecho.com
https://groups.google.com/forum/#!forum/meetecho-janus


A quick recap: modular architecture

• The core only implements the WebRTC stack
• JSEP/SDP, ICE, DTLS-SRTP, Data Channels, ...

• Plugins expose Janus API over different “transports”
• Currently HTTP / WebSockets / RabbitMQ / Unix Sockets / MQTT

• “Application” logic implemented in plugins too
• Users attach to plugins via the Janus core
• The core handles the WebRTC stuff
• Plugins route/manipulate the media/data

• Plugins can be combined on client side as “bricks”
• Video SFU, Audio MCU, SIP gatewaying, broadcasting, etc.



“Pointers, pointers, everywhere...”

• Plugins a very powerful way to extend Janus, but...
• ... everything in Janus is written in C! (well, except the web demos of course...)

• May be troublesome for some users to write their own (when really needed)



Let’s have a look at the Plugin API (1)

• Plugin initialization and information

• init(): called when plugin is loaded

• destroy(): called when Janus is shutting down

• get_api_compatibility(): must return JANUS_PLUGIN_API_VERSION

• get_version(): numeric version identifier (e.g., 3)

• get_version_string(): verbose version identifier (e.g., “v1.0.1”)

• get_description(): verbose description of the plugin (e.g., “This is my awesome plugin
that does this and that”)

• get_name(): short display name for your plugin (e.g., “My Awesome Plugin”)

• get_author(): author of the plugin (e.g., “Meetecho s.r.l.”)

• get_package(): unique package identifier for your plugin (e.g., “janus.plugin.myplugin”)



Let’s have a look at the Plugin API (2)

• Sessions management (callbacks invoked by the core)

• create_session(): a user (session+handle) just attached to the plugin
• handle_message(): incoming message/request (with or without a JSEP/SDP)
• setup_media(): PeerConnection is now ready to be used
• incoming_rtp(): incoming RTP packet
• incoming_rtcp(): incoming RTCP message
• incoming_data(): incoming DataChannel message
• slow_link(): notification of problems on media path
• hangup_media(): PeerConnection has been closed (e.g., DTLS alert)
• query_session(): called to get plugin-specific info on a user session
• destroy_session(): existing user gone (handle detached)



Let’s have a look at the Plugin API (3)

• Interaction with the core (methods invoked by the plugin)

• push_event(): send the user a JSON message/event (with or without a JSEP/SDP)

• relay_rtp(): send/relay the user an RTP packet

• relay_rtcp(): send/relay the user an RTCP message

• relay_data(): send/relay the user a DataChannel message

• close_pc(): close the user’s PeerConnection

• end_session(): close a user session (force-detach core handle)

• events_is_enabled(): check whether the event handlers mechanism is enabled

• notify_event(): notify an event to the registered and subscribed event handlers



Sequence diagrams (sessions mgmt)



Sequence diagrams (sessions mgmt)



Sequence diagrams (sessions mgmt)



Sequence diagrams (sessions mgmt)



Sequence diagrams (sessions mgmt)



Sequence diagrams (sessions mgmt)



Writing a plugin in a different language

• All the above methods and callbacks need to be implemented in C

• The core loads a shared module, and the core is written in C

• That said, does the logic really need to be written in C too?

• As long as stubs are C, the core is happy
• What these stubs do and return can be done in a different way

• All we need is provide hooks and bindings in C, and delegate the logic

Exactly what we did with the Lua plugin!
• https://github.com/meetecho/janus-gateway/pull/1033
• http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

https://github.com/meetecho/janus-gateway/pull/1033
http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Writing a plugin in a different language

• All the above methods and callbacks need to be implemented in C

• The core loads a shared module, and the core is written in C

• That said, does the logic really need to be written in C too?

• As long as stubs are C, the core is happy
• What these stubs do and return can be done in a different way

• All we need is provide hooks and bindings in C, and delegate the logic

Exactly what we did with the Lua plugin!
• https://github.com/meetecho/janus-gateway/pull/1033
• http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

https://github.com/meetecho/janus-gateway/pull/1033
http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Writing a plugin in a different language

• All the above methods and callbacks need to be implemented in C

• The core loads a shared module, and the core is written in C

• That said, does the logic really need to be written in C too?

• As long as stubs are C, the core is happy
• What these stubs do and return can be done in a different way

• All we need is provide hooks and bindings in C, and delegate the logic

Exactly what we did with the Lua plugin!
• https://github.com/meetecho/janus-gateway/pull/1033
• http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

https://github.com/meetecho/janus-gateway/pull/1033
http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Writing a plugin in a different language

• All the above methods and callbacks need to be implemented in C

• The core loads a shared module, and the core is written in C

• That said, does the logic really need to be written in C too?

• As long as stubs are C, the core is happy
• What these stubs do and return can be done in a different way

• All we need is provide hooks and bindings in C, and delegate the logic

Exactly what we did with the Lua plugin!
• https://github.com/meetecho/janus-gateway/pull/1033
• http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

https://github.com/meetecho/janus-gateway/pull/1033
http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Janus Lua plugin: the basics

• Conceptually simple: C plugin, but with an embedded Lua state machine
• Load a user-provided Lua script when initializing the plugin
• Implement plugin callbacks in C, and have them call a Lua function
• Implement core methods as Lua functions in C, that the Lua script can invoke
• Track users/sessions via a unique ID that the C and Lua code share

• In theory, everything works (simple C↔Lua proxy)
• The core sees a C plugin, but logic is handled in Lua

• In practice, that’s not enough...

1 Lua is single threaded (how to do things really asynchronously?)
2 Handling RTP in Lua space would kill performance



Janus Lua plugin: the basics

• Conceptually simple: C plugin, but with an embedded Lua state machine
• Load a user-provided Lua script when initializing the plugin
• Implement plugin callbacks in C, and have them call a Lua function
• Implement core methods as Lua functions in C, that the Lua script can invoke
• Track users/sessions via a unique ID that the C and Lua code share

• In theory, everything works (simple C↔Lua proxy)
• The core sees a C plugin, but logic is handled in Lua

• In practice, that’s not enough...

1 Lua is single threaded (how to do things really asynchronously?)
2 Handling RTP in Lua space would kill performance



Janus Lua plugin: the basics

• Conceptually simple: C plugin, but with an embedded Lua state machine
• Load a user-provided Lua script when initializing the plugin
• Implement plugin callbacks in C, and have them call a Lua function
• Implement core methods as Lua functions in C, that the Lua script can invoke
• Track users/sessions via a unique ID that the C and Lua code share

• In theory, everything works (simple C↔Lua proxy)
• The core sees a C plugin, but logic is handled in Lua

• In practice, that’s not enough...

1 Lua is single threaded (how to do things really asynchronously?)
2 Handling RTP in Lua space would kill performance



Hooks and bindings (1)

• Plugin initialization and information

C Lua
init() −→ init()
destroy() −→ destroy()
get_api_compatibility() −→ not needed
get_version() −→ getVersion()1

get_version_string() −→ getVersionString()1

get_description() −→ getDescription()1

get_name() −→ getName()1

get_author() −→ getAuthor()1

get_package() −→ getPackage()1

1Not really needed, so optional



Hooks and bindings (2)

• Sessions management (callbacks invoked by the core)

C Lua
create_session() −→ createSession()
handle_message() −→ handleMessage()
setup_media() −→ setupMedia()
incoming_rtp() −→ incomingRtp()2

incoming_rtcp() −→ incomingRtcp()2

incoming_data() −→ incomingData()2

slow_link() −→ slowLink()
hangup_media() −→ hangupMedia()
query_session() −→ querySession()
destroy_session() −→ destroySession()

2Not the right way... more on this later!



Hooks and bindings (3)

• Interaction with the core (methods invoked by the plugin)

C Lua
push_event() ←− pushEvent()
relay_rtp() ←− relayRtp()3

relay_rtcp() ←− relayRtcp()3

relay_data() ←− relayData()3

close_pc() ←− closePc()
end_session() ←− endSession()
events_is_enabled() ←− eventsIsEnabled()4

notify_event() ←− notifyEvent()

3Not the right way... more on this later!
4Not really needed, so optional



Example of hooks and bindings



Asynchronous logic in the Lua plugin

• We’ve seen how asynchronous events are heavily used by plugins
• Asynchronous message response, negotiations, etc.
• Most out-of-the-box Janus plugins are thread based

• Lua is single threaded, though...
• Coroutines can be seen as threads, but they aren’t
• Access to the Lua state isn’t thread safe either

Solution: a C “scheduler”
A dedicated thread in the C code of the plugin acts as scheduler
• The Lua script queues tasks, and “pokes” the scheduler via pokeScheduler()

• pokeScheduler() is implemented in C, and wakes the scheduler (queue)
• The C scheduler calls resumeScheduler() in Lua as a coroutine



Asynchronous logic in the Lua plugin

• We’ve seen how asynchronous events are heavily used by plugins
• Asynchronous message response, negotiations, etc.
• Most out-of-the-box Janus plugins are thread based

• Lua is single threaded, though...
• Coroutines can be seen as threads, but they aren’t
• Access to the Lua state isn’t thread safe either

Solution: a C “scheduler”
A dedicated thread in the C code of the plugin acts as scheduler
• The Lua script queues tasks, and “pokes” the scheduler via pokeScheduler()

• pokeScheduler() is implemented in C, and wakes the scheduler (queue)
• The C scheduler calls resumeScheduler() in Lua as a coroutine



Asynchronous logic in the Lua plugin

• We’ve seen how asynchronous events are heavily used by plugins
• Asynchronous message response, negotiations, etc.
• Most out-of-the-box Janus plugins are thread based

• Lua is single threaded, though...
• Coroutines can be seen as threads, but they aren’t
• Access to the Lua state isn’t thread safe either

Solution: a C “scheduler”
A dedicated thread in the C code of the plugin acts as scheduler
• The Lua script queues tasks, and “pokes” the scheduler via pokeScheduler()

• pokeScheduler() is implemented in C, and wakes the scheduler (queue)
• The C scheduler calls resumeScheduler() in Lua as a coroutine



Scheduler example: asynchronous reply



Scheduler example: asynchronous reply



Timed callbacks in the Lua plugin

• pokeScheduler() and resumeScheduler() are great but have limits
• No arguments can be passed to the scheduler
• You need to keep track of tasks yourself
• The resumeScheduler() function is called as soon as possible

• You may want to trigger a callback (with a parameter?) after some time instead
• e.g., “call secondsPassed(5) in 5 seconds”

Solution: a new timeCallback function as a C hook
A timed source in the C code of the plugin acts as triggerer
• The Lua script times a callback via timeCallback()

• timeCallback() is implemented in C, and creates a timed source
• The source fires and calls the specified callback in Lua as a coroutine



Timed callbacks in the Lua plugin

• pokeScheduler() and resumeScheduler() are great but have limits
• No arguments can be passed to the scheduler
• You need to keep track of tasks yourself
• The resumeScheduler() function is called as soon as possible

• You may want to trigger a callback (with a parameter?) after some time instead
• e.g., “call secondsPassed(5) in 5 seconds”

Solution: a new timeCallback function as a C hook
A timed source in the C code of the plugin acts as triggerer
• The Lua script times a callback via timeCallback()

• timeCallback() is implemented in C, and creates a timed source
• The source fires and calls the specified callback in Lua as a coroutine



Timed callbacks in the Lua plugin

• pokeScheduler() and resumeScheduler() are great but have limits
• No arguments can be passed to the scheduler
• You need to keep track of tasks yourself
• The resumeScheduler() function is called as soon as possible

• You may want to trigger a callback (with a parameter?) after some time instead
• e.g., “call secondsPassed(5) in 5 seconds”

Solution: a new timeCallback function as a C hook
A timed source in the C code of the plugin acts as triggerer
• The Lua script times a callback via timeCallback()

• timeCallback() is implemented in C, and creates a timed source
• The source fires and calls the specified callback in Lua as a coroutine



What about RTP/RTCP/data?

• As we pointed out, handling data in Lua drags performance down
• While hooks are there, there’s a cost in going from C to Lua and viceversa
• Lua state is single threaded, meaning relaying would have a bottleneck

• Arguably this is more of an issue for RTP, less so for RTCP and data
• ... unless RTCP and data messages are very frequent too

Solution: only configuring routing in Lua (actual relaying still in C)

The C code routes the media according to dynamic changes coming from Lua
• addRecipient() and removeRecipient() dictate who receives user’s media
• configureMedium() opens/closes valves for outgoing/incoming media
• Helper methods (setBitrate(), sendPli(), etc.) do the rest



What about RTP/RTCP/data?

• As we pointed out, handling data in Lua drags performance down
• While hooks are there, there’s a cost in going from C to Lua and viceversa
• Lua state is single threaded, meaning relaying would have a bottleneck

• Arguably this is more of an issue for RTP, less so for RTCP and data
• ... unless RTCP and data messages are very frequent too

Solution: only configuring routing in Lua (actual relaying still in C)

The C code routes the media according to dynamic changes coming from Lua
• addRecipient() and removeRecipient() dictate who receives user’s media
• configureMedium() opens/closes valves for outgoing/incoming media
• Helper methods (setBitrate(), sendPli(), etc.) do the rest



What about RTP/RTCP/data?

• As we pointed out, handling data in Lua drags performance down
• While hooks are there, there’s a cost in going from C to Lua and viceversa
• Lua state is single threaded, meaning relaying would have a bottleneck

• Arguably this is more of an issue for RTP, less so for RTCP and data
• ... unless RTCP and data messages are very frequent too

Solution: only configuring routing in Lua (actual relaying still in C)

The C code routes the media according to dynamic changes coming from Lua
• addRecipient() and removeRecipient() dictate who receives user’s media
• configureMedium() opens/closes valves for outgoing/incoming media
• Helper methods (setBitrate(), sendPli(), etc.) do the rest



Routing media (SFU example)



A few examples: EchoTest clone



Something trickier: VideoRoom clone



VideoCall clone: a tutorial

http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/

http://www.meetecho.com/blog/tutorial-writing-a-janus-video-call-plugin-in-lua/


Astricon 2017 Dangerous Demo

https://gist.github.com/lminiero/9aeeda1be501fb636cad0c8057c6e076

https://gist.github.com/lminiero/9aeeda1be501fb636cad0c8057c6e076


One more cool example... Chatroulette!

https://github.com/lminiero/fosdem18-januslua

https://github.com/lminiero/fosdem18-januslua


One more cool example... Chatroulette!

https://github.com/lminiero/fosdem18-januslua

https://github.com/lminiero/fosdem18-januslua


One more cool example... Chatroulette!

https://github.com/lminiero/fosdem18-januslua

https://github.com/lminiero/fosdem18-januslua


One more cool example... Chatroulette!

https://github.com/lminiero/fosdem18-januslua

https://github.com/lminiero/fosdem18-januslua


What to do next?

• Integrate advanced features recently added to master
• RTP injection/forwarding, simulcasting, VP9 SVC, ...

• General improvements may be needed once it’s used more
• Based on refcount branch, which is experimental itself

• Do Lua-based Transport plugins and Event Handlers make any sense?
• They’re plugins (shared objects) too, after all...

• Why not, write new plugins for other programming languages!
• Most hooks are already there, after all, we only need bindings
• A potential “candidate”: JavaScript (e.g., with http://duktape.org/)

Help us improve this!
• Play with it, more testing is important
• Write your own applications, or help expand the Lua plugin itself!

http://duktape.org/


What to do next?

• Integrate advanced features recently added to master
• RTP injection/forwarding, simulcasting, VP9 SVC, ...

• General improvements may be needed once it’s used more
• Based on refcount branch, which is experimental itself

• Do Lua-based Transport plugins and Event Handlers make any sense?
• They’re plugins (shared objects) too, after all...

• Why not, write new plugins for other programming languages!
• Most hooks are already there, after all, we only need bindings
• A potential “candidate”: JavaScript (e.g., with http://duktape.org/)

Help us improve this!
• Play with it, more testing is important
• Write your own applications, or help expand the Lua plugin itself!

http://duktape.org/


What to do next?

• Integrate advanced features recently added to master
• RTP injection/forwarding, simulcasting, VP9 SVC, ...

• General improvements may be needed once it’s used more
• Based on refcount branch, which is experimental itself

• Do Lua-based Transport plugins and Event Handlers make any sense?
• They’re plugins (shared objects) too, after all...

• Why not, write new plugins for other programming languages!
• Most hooks are already there, after all, we only need bindings
• A potential “candidate”: JavaScript (e.g., with http://duktape.org/)

Help us improve this!
• Play with it, more testing is important
• Write your own applications, or help expand the Lua plugin itself!

http://duktape.org/


What to do next?

• Integrate advanced features recently added to master
• RTP injection/forwarding, simulcasting, VP9 SVC, ...

• General improvements may be needed once it’s used more
• Based on refcount branch, which is experimental itself

• Do Lua-based Transport plugins and Event Handlers make any sense?
• They’re plugins (shared objects) too, after all...

• Why not, write new plugins for other programming languages!
• Most hooks are already there, after all, we only need bindings
• A potential “candidate”: JavaScript (e.g., with http://duktape.org/)

Help us improve this!
• Play with it, more testing is important
• Write your own applications, or help expand the Lua plugin itself!

http://duktape.org/


What to do next?

• Integrate advanced features recently added to master
• RTP injection/forwarding, simulcasting, VP9 SVC, ...

• General improvements may be needed once it’s used more
• Based on refcount branch, which is experimental itself

• Do Lua-based Transport plugins and Event Handlers make any sense?
• They’re plugins (shared objects) too, after all...

• Why not, write new plugins for other programming languages!
• Most hooks are already there, after all, we only need bindings
• A potential “candidate”: JavaScript (e.g., with http://duktape.org/)

Help us improve this!
• Play with it, more testing is important
• Write your own applications, or help expand the Lua plugin itself!

http://duktape.org/


Thanks! Questions? Comments?

Get in touch!
• https://twitter.com/elminiero
• https://twitter.com/meetecho
• http://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
http://www.meetecho.com

