
 FOSDEM 2018 

HPC, Big Data & Data Science devroom

Installing software for scientists 
on a multi-user HPC system

A comparison between:

Kenneth Hoste 
kenneth.hoste@ugent.be  

GitHub: @boegel

Twitter: @kehoste

Nix

Feb 4th 2018, Brussels (Belgium)

mailto:kenneth.hoste@ugent.be
http://twitter.com/kehoste

2

• getting scientific software installed can be challenging

• lack of documentation & good software engineering practices

• non-standard installation procedures

• dependency hell

• ...

• scientists mostly care about the science

• they're often not software engineers or system administrators

• the software they need should be (made) easily accessible

Installing software for scientists 
on a multi-user HPC system

" If we would know what we are doing, 
 it wouldn't be called 'research'. "

3

• a supercomputer is very different from your laptop...

• both in good (performance, parallellism) and 'bad' ways (ease of use)

• often broad spectrum of users, with varying requirements

• typically central installation of (scientific) software

• multiple software versions (& variants) side-by-side

• software installations remain available 'indefinitely'

• performance is key

• get the most out of the available hardware (processor architecture, ...)

• maximise amount of "science" that can be done

• 10% performance difference can be a big deal...

Installing software for scientists 
on a multi-user HPC system

4

Disclaimer & acknowledgements

• my intention is to make this an objective comparison

• not easy as lead developer/release manager of

• I spent hours of hands-on with each of the tools to familiarise myself

• there is definitely still some personal bias here and there...

• thanks to many people for their feedback:

• Todd Gamblin

• Ludovic Courtès

• Ricardo Wurmus

• Valentin Reis

• Bruno Bzeznik

• Ward Poelmans

• Jillian Rowe

• + anyone else who answered
any of my questions...

5

30-second introductions

Nix

package, dependency and environment management "for any language"
(originally created for Python, but now also supports C, C++, FORTRAN, R, ...)

• tool for installing binary packages and setting up 'environments'

• included in Anaconda: optimised Python/R distribution (batteries incl.)

• packages are available via Anaconda cloud and many other 'channels'

• package recipes are written in YAML syntax + a script (.sh or .bat)

• building of packages is done via "conda build"

• GitHub organisation for hosting recipes: https://conda-forge.org

• supported software: > 3,500

6

https://conda.io

• OS: Linux, macOS, Windows

• impl. in Python (2.7 or >= 3.3)

• target audience: 

end users, scientists

• focus:

- binary packages

- quick & easy software installation

- cross-platform

https://conda-forge.org
https://conda.io

framework for building & installing (scientific) software on HPC systems

• build procedures are implemented in easyblocks (Python modules), 
which leverage the functionality of the EasyBuild framework

• separate easyconfig files specify (in Python syntax) what to install, 
and using which toolchain (compiler + MPI/BLAS/LAPACK/FFT libraries)

• aims for good performance by default: compiler options, libraries, ...

• generates environment module files (easy interface for end users)

• various features to allow site-specific customisations

• support for using own easyconfig files (recipes), 'plugins', hooks, ...

• supported software: > 2,000 (> 1,300 + > 700 'extensions')
7

http://easybuilders.github.io/easybuild

• OS: Linux, Cray, (macOS)

• impl. in Python (2.6 or 2.7)

• target audience: 

HPC user support teams

• focus:

- building from source

- easy installation of software

- good performance

http://easybuilders.github.io/easybuild

the purely functional package manager

• package (and configuration) manager for NixOS, 
but can also be used stand-alone on other Unix systems

• strong focus on (bitwise) reproducibility through build isolation, etc.

• supports atomic package upgrades & rollbacks

• downloads and installs binary packages (or builds from source if not available)

• multi-user support via profiles with nix-env

• package recipes are implemented in custom Nix DSL

• supported software: > 13,000 (+ 12,000 Haskell packages)

8

Nix
https://nixos.org/nix

• OS: Linux, macOS, Unix

• implemented in C++

• target audience: 

system administrators, 
(experienced) end users, ...

• focus:

- binary installations

- isolated build environment

- portability

https://nixos.org/nix

the GNU package manager

• package manager for GuixSD, the Guix System Distribution (+ GNU Hurd), 
but can also be used on other GNU/Linux distributions

• design is quite similar to Nix, but different implementation

• package definitions in GNU Guile (Scheme) rather than custom Nix DSL

• Guix can leverage the Nix build daemon if available

• also strong focus on (bitwise) reproducibility of installations

• only supports free software, no proprietary software

• transactional upgrades & rollbacks, per-user profiles, etc.

• supported software: > 6,500
9

https://www.gnu.org/software/guix

• OS: GNU/Linux

• implemented in Scheme, C++

• target audience: 

system administrators, 
(experienced) end users, ...

• focus:

• binary installations

• isolated build environment

• free software & GNU philosophy

https://www.gnu.org/software/guix

10

https://spack.io

• OS: Linux, macOS, Cray

• impl. in Python (>=2.6 or >=3.3)

• target audience: 

(scientific) software developers

• focus:

• building from source

• flexibility

• cross-platform

Spack is a flexible package manager 
for supercomputers, Linux, and macOS

• supports multiple (software) versions, configurations, compilers, ...

• quite similar to EasyBuild in some ways, but has a different design & focus

• packages are (also) Python modules, but no separate 'recipe' files (cfr. easyconfigs)

• in-memory DAG resolution, dependency resolution, database of installed packages

• support for exposing installations through environment modules (or dotkit)

• powerful CLI to specify partial DAG w.r.t. dependencies, compiler, etc. 
spack install mpileaks@1.1.2 %gcc@4.7.3 +debug ^libelf@0.8.12

• supported software: > 2,300

https://spack.io

11

platforms Linux, macOS,
Windows Linux, Cray GNU/Linux Linux, macOS,

Unix
Linux, macOS,

Cray

implementation Python 2/3,
YAML Python 2 Scheme, Guile C++, 

Nix (DSL) Python 2/3

supp. software > 3,500 > 2,000 < 6,500 > 13,000 > 2,300

releases, 
install & update

documentation

configuration

usage

time to result

performance

reproducibility

Nix

Project comparison

this comparison table will be completed  
in the remainder of this talk with stars

excellent
very good
good
ok
average
bad

12

2012 2013 2014 2015 2016 2017 2018

v2.0.0

v1.0.0 v3.0.0 v4.0.0
(latest)

v4.4.4

• 195 releases since September 2012

• install via shell install script (via Miniconda or Anaconda)

• self-update using "conda update conda"

• dependencies: none (even Python is included in installation!)

Releases, installing & updating

32 16 66 77

 sudo required?
• installation: no
• usage: no

13

2012 2013 2014 2015 2016 2017 2018

v0.5 v1.0.0 v2.0.0 v3.0.0 v3.5.1

• 58 releases since April 2012

• stable (v1.0) since November 2012

• 3 years of in-house development prior to first public release

• installation via custom bootstrap script, or standard Python tools (pip, ...)

• self-update using "eb --install-latest-eb-release"

• dependencies: environment modules, Python 2.x, setuptools, C++ compiler, ...

3 26 12 12

Releases, installing & updating
 sudo required?
• installation: no
• usage: no!

14

Nix

v1.0 v1.11 v1.11.16

2004

v0.5

• 49 releases since April 2004

• stable (v1.0) since May 2012

• custom install script to install binary release (or from build source)

• build daemon (nix-daemon) required (as root) for multi-user support

• self-update via nix-channel --update && nix-env --install nix

• dependencies: none (unless you build Nix from source)

2005 2012 2013 2014 2015 2016 2017 2018

Releases, installing & updating

16 14 15

 sudo required?
• installation: yes
• usage: no

15

2012 2013 2014 2015 2016 2017 2018

v0.1 v0.14

• 17 releases since January 2013

• still in beta (no v1.0 yet)

• install by unpacking binary distribution, or build from source

• no installation script available, manual installation process...

• build daemon (guix-daemon) required (as root)

• self-update using "guix pull"

• dependencies: Guile, libgcrypt, make, ..

15

Releases, installing & updating
 sudo required?
• installation: yes
• usage: no

16

2012 2013 2014 2015 2016 2017 2018

v0.8

• 12 releases since July 2014

• still in beta (no v1.0 yet)

• install by unpacking source tarball or using "git clone" (recommended) 
+ setting up environment (update $PATH or source a script)

• update Spack using "git pull"

• dependencies: C/C++ compiler, git, curl, ...

v0.10

8

Releases, installing & updating
 sudo required?
• installation: no
• usage: no

v0.11.0
v0.11.1

All 5 projects have good to excellent documentation! 
(but there's always room for improvement...)

conda.io

easybuild.readthedocs.io

www.gnu.org/software/guix/manual/guix.html

nixos.org/nix/manual

spack.readthedocs.io

17

Documentation

Nix

http://conda.io
http://easybuild.readthedocs.io
https://www.gnu.org/software/guix/manual/guix.html
http://nixos.org/nix/manual
http://spack.readthedocs.io

18

Configuration

• software installation prefix can be specified per conda environment

conda create --prefix <path>

• default is to install software in $HOME/.conda

• some minimal configuration is highly recommended:

• software/modules installation prefix 
(default: $HOME/.local/easybuild)

• location of build directories (recommended: /tmp, /dev/shm, ...)

• also: modules tool, syntax for module files, ...

• via configuration files, environment or command line options

• limited to no required configuration, except build users for daemon

• software is installed into /gnu/store (hard to change)

• limited to no required configuration, except build users for daemon

• software is installed into /nix/store (hard to change)

• software is installed into <spack>/opt/spack (easy to change)

• several optional configuration settings available

19

Configuration

Nix

20

Basic usage

• first, create a conda environment:

conda create --prefix $HOME/my_fftw

• activate the environment to install (& use) the software:

source activate $HOME/my_fftw

• installing software into current conda environment:

conda install -c conda-forge fftw

• to install other software (versions), either:

i. try to find a conda package for it somewhere (other channel, ...)

ii. create/update meta.yaml (and build.sh) and build package yourself 
conda build recipe  

conda install --local recipe

21

Basic usage

• search for available easyconfig files

eb --search fftw

• install software (+ toolchain/dependencies) by specifying an easyconfig:

eb FFTW-3.3.7-gompi-2018a.eb --robot

• to use the software, load the corresponding generate module file:

module load FFTW/3.3.7-gompi-2018a

• to install other software versions (or use another toolchain), either:

i. find an easyconfig file (+ easyblock, if needed) for it somewhere

ii. adjust an existing easyconfig file, or use eb --try-*

iii. compose an easyconfig file yourself (+ easyblock for complex software)

22

NixBasic usage

• searching for available software

nix-env -qa 'fftw.*'

• installing software (all 3 variants of FFTW, for different precisions)

nix-env --install 'fftw.*'

• installations are added to your Nix profile by default, so ready to use

• to install other software (versions):

• customise existing Nix package, then nix-env --install ...

• new Nix package + build script, then nix-env --install -f ...

Basic usage

23

• searching for available software

guix package --search fftw

• installing software

guix package --install=fftw

• installations are added to your Guix profile by default, so ready to use

• to install other software (versions):

• update existing package file, run guix package -i <software>

• define package (in Scheme), run guix package -f pkg.scm

24

Basic usage

• install software (+ dependencies) with system compilers

spack install fftw

• install software (+ dependencies) with a particular compiler

spack install gcc@6.4.0

spack compiler add opt/spack/spack/linux-*/gcc-6.4.0

spack install fftw %gcc@6.4.0

• to use the software, load it:

spack load fftw or spack load fftw %gcc@6.4.0

• to install other software (versions):

• spack install foo@new-version (if you're lucky)

• or maybe need update the 'spackage' (<software>/package.py)

25

Time to result
• quick installation when binary packages are used/favoured:

• slower installation when software is built from source 
(but usually fully autonomous)

• EasyBuild requires toolchain to be available (usually also built from source) 
(existing compilers & libraries can be leveraged too if desired)

• Spack picks up system compilers by default

• Spack is also looking into "architecture-aware" binary packaging 
(see Todd's presentation next!)

Nix

26

Time to result: installing FFTW

Nix

FFTW 3.3.7 
(binary install) 
~25 sec.

FFTW 3.3.5 
(binary install) 
~2.5 min.

FFTW 3.3.7 
(binary install) 
~10 sec.

FFTW 3.3.7  
(from source)

deps (incl. toolchain): ~32 min. 
build & install FFTW: ~6 min. 
testing: ~32 min. TOTAL: ~70 min.

FFTW 3.3.6-pl2 
(from source)

with system GCC: ~16min. (incl. deps) 

with GCC 6.4.0: ~20 min. (incl. deps) 

(+ 29 min. to first install GCC 6.4.0)

(using latest release of each tool)

27

Performance of installed software

• installing binary packages (usually) implies:

• installing generically compiled software

• software installations may not fully exploit system resources

• sacrificing lower runtime performance for quick installation

• compiling from source allows specifically targeting system architecture

• gcc -O2 -march=native ...

• leverage advanced processor features like AVX2, AVX512, ...

• trading portability of installations for better runtime performance

• whether you care (much) or not depends heavily on context...

• quite important on supercomputers!

0

1

2

3

4

5

6

7

conda Guix Nix Spack EasyBuild

tim
e	
(s
ec
on
ds
)

28

Performance of FFTW installation
• single-core test from http://micro.stanford.edu/wiki/Install_FFTW3

• N0, N1 set to 8192 to obtain sufficiently 'long' run times

• timings are for default installations (no tweaking)

• test system: CentOS 7.4, Intel E5-2680v3 (Haswell-EP) 2.5GHz

generically built binary packages, 
no AVX* instructions

result: slower software

GCC 6.4.0 
AVX + AVX2

~2x

compiled from source

(can be) optimised for system architecture

system GCC (4.8.5) 
or GCC 6.4.0 

only SSE2 (no AVX*)

http://micro.stanford.edu/wiki/Install_FFTW3

0

1

2

3

4

5

6

7

conda Guix Nix Spack EasyBuild

tim
e	
(s
ec
on
ds
)

29

Performance of FFTW installation
• single-core test from http://micro.stanford.edu/wiki/Install_FFTW3

• N0, N1 set to 8192 to obtain sufficiently 'long' run times

• timings are for default installations (no tweaking)

• test system: CentOS 7.4, Intel E5-2680v3 (Haswell-EP) 2.5GHz

generically built binary packages, 
no AVX* instructions

result: slower software

GCC 6.4.0 
AVX + AVX2

~2x

compiled from source

(can be) optimised for system architecture

system GCC (4.8.5) 
or GCC 6.4.0 

only SSE2 (no AVX*)

really bad performance 
with Spack 0.11.0 due 

to building with -O0 :-/

http://micro.stanford.edu/wiki/Install_FFTW3

30

Other aspects we did not cover
• community

• unit & regression testing

• security

• key features

• : support for combining multiple installation prefixes, 

GitHub integration, distributed software installation, dry run mode,

packaging via FPM, support for user-defined hooks, ...

• , : bitwise reproducibility of installations, ...

• : (very) flexible dependency management, 
support for binary caching, "virtual" packages (e.g. MPI), variants, ...

• (+ much more...)

Nix

31

platforms Linux, macOS,
Windows Linux, Cray GNU/Linux Linux, macOS,

Unix
Linux, macOS,

Cray

implementation Python 2/3,
YAML Python 2 Scheme, Guile C++, 

Nix (DSL) Python 2/3

supp. software > 3,500 > 2,000 < 6,500 > 13,000 > 2,300

releases, 
install & update

documentation

configuration

usage

time to result

performance

reproducibility

Nix

And the winner is: iwell, t depends...

32

• profile of person installing software + profile of end users

• scientist vs software developer vs HPC support team vs sysadmin

• prior experience with software installation & compilation

• can you figure things out if something fails?

• use case for the software you are installing

• only to play around with, or for production usage?

• handful of small experiments, or lots of large-scale calculations?

• whether you are concerned about time to result, reproducibility, security, ...

And the winner is: well, it depends...

Linux Windows Mac

33

FOSDEM'18 talk making waves...

• v0.11.1 bugfix release

• quickly after v0.11.0 (first Spack release in ~ 1 year)

• important fix for accidental compilation with -O0

• problem encountered when testing performance of FFTW install

• easy installation script for

• as reaction to my questions on manual installation procedure

• excellent blog post by Ludovic Courtès on portability vs performance

• triggered by FFTW performance comparison in draft presentation

• https://guix-hpc.bordeaux.inria.fr/blog/2018/01/pre-built-
binaries-vs-performance/

(before it actually happened...)

https://guix-hpc.bordeaux.inria.fr/blog/2018/01/pre-built-binaries-vs-performance/
https://guix-hpc.bordeaux.inria.fr/blog/2018/01/pre-built-binaries-vs-performance/

Other software build tools

34

• barely used in HPC context
• lack of support for 

multi-user environments
• fewer supported scientific

software packages

Portage - https://wiki.gentoo.org/wiki/Portage

• Gentoo package management system

pkgsrc - https://www.pkgsrc.org

• cross-platform build system

• over 15,000 supported software packages!

Homebrew - https://brew.sh

• "the missing package manager for macOS"

• ported for Linux: http://linuxbrew.sh

• homebrew-science tap is no longer maintained :(

https://wiki.gentoo.org/wiki/Portage
https://www.pkgsrc.org
https://brew.sh
http://linuxbrew.sh

 Singularity - http://singularity.lbl.gov

• "Docker for HPC" (no root daemon)

• image-based containers

• existing Docker containers can be converted to Singularity images

• huge uptake in last 1.5 years in HPC community

• HPCwire articles: http://tiny.cc/singularity_llc, http://tiny.cc/singularity_sc17

udocker - https://github.com/indigo-dc/udocker

• tool to run Docker containers in user space (no root required)

• leverages other tools like Singularity, PRoot, runC

• recent HPCwire article: http://tiny.cc/hpcwire_udocker

35

Containers for scientific software & HPC

• strong focus on 
"mobility of compute"

• performance is often
sacrificed for portability :(

http://singularity.lbl.gov
http://tiny.cc/singularity_llc
http://tiny.cc/singularity_sc17
https://github.com/indigo-dc/udocker
http://tiny.cc/hpcwire_udocker

