FOSDEM

HPC, Big Data & Data Science devroom
Feb 4th 2018, Brussels (Belgium)

Installing software for scientists
on a multi-user HPC system

A comparison between:

CONDA i eashuld "VGuixre 7% Nix € Spack

| I Kenneth Hoste
L, - = N "' "
?' e kenneth.hoste@Qugent.be

GitHub: @boegel

| \“ |"le” ¥ Twitter: @kehoste

mailto:kenneth.hoste@ugent.be
http://twitter.com/kehoste

Installing software for scientists

e getting scientific software installed can be challenging

e |ack of documentation & good software engineering practices

e non-standard installation procedures

e dependency hell

" If we would know what we are doing, v / b
. .. . /SEr
it wouldn't be called 'research'. " \'

* scientists mostly care about the science

* they're often not software engineers or system administrators

* the software they need should be (made) easily accessible

on a multi-user HPC system

* a supercomputer is very different from your laptop...

* both in good (performance, parallellism) and 'bad' ways (ease of use)

e often broad spectrum of users, with varying requirements

e typically central installation of (scientific) software
* multiple software versions (& variants) side-by-side

e software installations remain available 'indefinitely’

 performance is key

e get the most out of the available hardware (processor architecture, ...)
* maximise amount of "science" that can be done

e 10% performance difference can be a big deal...

Disclaimer & acknowledgements

my intention is to make this an objective comparison
not easy as lead developer/release manager of 60\57'\3%\\&
| spent hours of hands-on with each of the tools to familiarise myself

there is definitely still some personal bias here and there...

thanks to many people for their feedback:

 Todd Gambilin * Bruno Bzeznik

e Ludovic Courtes e Ward Poelmans

* Ricardo Wurmus e Jillian Rowe

 Valentin Reis * + anyone else who answered

any of my questions...

30-second introductions

@ Spack

CONDA

a2

7&_‘2 Nix

V GuixXHRC

* OS: Linux, macOS, Windows | « focus:

 impl. in Python (2.7 or >= 3.3) o N DA - binary packages

- target audience: | - quick & easy software installation
end users, scientists https://conda.io - cross-platform

package, dependency and environment management "for any language"

(originally created for Python, but now also supports C, C++, FORTRAN, R, ...)
e tool for installing binary packages and setting up 'environments'
* included in Anaconda: optimised Python/R distribution (batteries incl.)
* packages are available via Anaconda cloud and many other 'channels’

* package recipes are written in YAML syntax + a script (.sh or .bat)
e Dbuilding of packages is done via "conda build"

* GitHub organisation for hosting recipes: https://conda-forge.org

e supported software: > 3,500

https://conda-forge.org
https://conda.io

- OS: Linux, Cray, (macOS) » focus:

@r\\jp B A _—
- impl. in Python (2.6 or 2.7) g QQSY \“ - building from source

- target audience: - easy installation of software

HPC user support teams http://easybu:lders. github.io/easybuild - Gooe POTENTENEE

framework for building & installing (scientific) software on HPC systems

* Dbuild procedures are implemented in easyblocks (Python modules),
which leverage the functionality of the EasyBuild framework

e separate easyconfig files specify (in Python syntax) what to install,
and using which toolchain (compiler + MPI/BLAS/LAPACK/FFT libraries)

 aims for good performance by default: compiler options, libraries, ...
e generates environment module files (easy interface for end users)

e various features to allow site-specific customisations

* support for using own easyconfig files (recipes), 'plugins’, hooks, ...

e supported software: > 2,000 (> 1,300 + > 700 'extensions')

http://easybuilders.github.io/easybuild

- OS: Linux, macOS, Unix - focus:

u
- implemented in C++ -/Y N Ix - binary installations

. target audience: - isolated build environment

system administrators, https://nixos.org/nix - portability
(experienced) end users, ...

the purely functional package manager

* package (and configuration) manager for NixOS,
but can also be used stand-alone on other Unix systems

» strong focus on (bitwise) reproducibility through build isolation, etc.

e supports atomic package upgrades & rollbacks

e downloads and installs binary packages (or builds from source if not available)
e multi-user support via profiles with nix-env

e package recipes are implemented in custom Nix DSL

e supported software: > 13,000 (+ 12,000 Haskell packages)

https://nixos.org/nix

- OS: GNU/Linux * focus:

- implemented in Scheme, C++ \\ Ia - I_m * binary installations

- target audience: u IX - isolated build environment
system administrators, https://www.gnu.org/software/guix e software & GNU philosophy

(experienced) end users, ...
the GNU package manager

* package manager for GuixSD, the Guix System Distribution (+ GNU Hurd),
but can also be used on other GNU/Linux distributions

e design is quite similar to Nix, but different implementation
* package definitions in GNU Guile (Scheme) rather than custom Nix DSL

* Guix can leverage the Nix build daemon if available
 also strong focus on (bitwise) reproducibility of installations
* only supports free software, no proprietary software
e transactional upgrades & rollbacks, per-user profiles, etc.

e supported software: > 6,500

https://www.gnu.org/software/guix

» OS: Linux, macOS, Cray » focus:
* impl. in Python (>=2.6 or >=3.3) @ S paCk * building from source
- target audience: - flexibility
(scientific) software developers httos://spack.io cross-platform

Spack is a flexible package manager
for supercomputers, Linux, and macOS

« supports multiple (software) versions, configurations, compilers, ...

- quite similar to EasyBuild in some ways, but has a different design & focus

-« packages are (also) Python modules, but no separate 'recipe’ files (cfr. easyconfigs)

- in-memory DAG resolution, dependency resolution, database of installed packages

« support for exposing installations through environment modules (or dotkit)

- powerful CLI to specify partial DAG w.r.t. dependencies, compiler, etc.

spack install mpileaks@1.1.2 %gcc@4.7.3 +debug "1libelf@0.8.12

» supported software: > 2,300

10

https://spack.io

Project comparison

CONDA | fgeasybuild | "V/Guixtrc| 73 Nix | € Spack
Linux, macOS, . , Linux, macOS, | Linux, macQOS,
platforms Windows Linux, Cray GNU/Linux Unix Cray
. : Python 2/3, : C++,
implementation YAML Python 2 Scheme, Guile Nix (DSL) Python 2/3
supp. software > 3,500 > 2,000 < 6,500 > 13,000 > 2,300

releases,
install & update

documentation

configuration

usage

time to result

performance

reproducibility

this comparison table will be completed

Y % % % excellent

* Kk

* k

very good

good
(0] ¢
average
bad

In the remainder of this talk with stars

11

' ' ' CONDA
Releases, installing & updating ravivet

sudo required?
¢ |nstallation: no

195 releases since September 2012 |
e usage: no

e nstall via shell install script (via Miniconda or Anaconda)
e self-update using "conda update conda"

* dependencies: none (even Python is included in installation!)

32 v2.0.0 16 66 T |
/ y _— T _— (latest)

v1.0.0 v3.0.0 v4.0.0 v4.4.4

2012 2013 2014 2015 2016 2017 2018

12

7
A§§¢ 'LA

Releases, installing & updating &™™*

, _ sudo required?
58 releases since April 2012 e installation: no

¢ usage: no!

* stable (v1.0) since November 2012

* 3 years of in-house development prior to first public release

e installation via custom bootstrap script, or standard Python tools (pip, ...)

e self-update using "eb --install-latest-eb-release”

 dependencies: environment modules, Python 2.x, setuptools, C++ compiler, ...

3 26 12 12
v0.5 v1.0.0 v2.0.0 v3.0.0 v3.5.1

2012 2013 2014 2015 2016 2017 2018

13

Releases, installing & updating & Nix
* % %k

* 49 releases since April 2004 sudo required?
¢ installation: yes
e stable (v1.0) since May 2012 - sage: no

e custom install script to install binary release (or from build source)
e Dbuild daemon (nix-daemon) required (as root) for multi-user support
e self-update via nix-channel --update && nix-env --install nix

 dependencies: none (unless you build Nix from source)

/16\ / \ /15\

v0.5 v1.11 v1.11.16

2004 2005 2012 2013 2014 2015 2016 2017 2018

14

Releases, installing & updating VGuixHc

17 releases since January 2013 sudo required?
¢ installation: yes
still in beta (no v1.0 yet) ® usage: no

install by unpacking binary distribution, or build from source
* no installation script available, manual installation process...

* Dbuild daemon (guix-daemon) required (as root)
self-update using "quix pull"

dependencies: Guile, libgcrypt, make, ..

15

——””’——————— ‘—5555555“‘~>

vO.1 v0.14

2012

A 2014 2015 2016 2017 2018

15

Releases, installing & updating @ Spack

* Kk

12 releases since July 2014 sudo required?
e installation: no
® usage: no

still in beta (no v1.0 yet)

install by unpacking source tarball or using "git clone" (recommended)

+ setting up environment (update SPATH or source a script)

update Spack using "git pull”

dependencies: C/C++ compiler, git, curl, ...

8
— I 0.11.1
v0.8 v0.10 vu. .
v0.11.0
| | | | | | |
| | | | | | |
2012 2013 2014 2015 2016 2017 2018

16

Documentation

All 5 projects have good to excellent documentation!

(but there's always room for improvement...)

CONDA conda.io
. 0.0 .G easyl\m’\\& easybuild.readthedocs.io
\\/EiuixHI: www.gnu.org/software/guix/manual/guix.htmi

-/_‘f, Nix nixos.org/nix/manual

@ Spack spack.readthedocs.io

17

http://conda.io
http://easybuild.readthedocs.io
https://www.gnu.org/software/guix/manual/guix.html
http://nixos.org/nix/manual
http://spack.readthedocs.io

Configuration

CONDA

software installation prefix can be specified per conda environment

conda create --prefix <path>

default is to install software in SHOME/ . conda

*hok e casybuild

some minimal configuration is highly recommended:

e software/modules installation prefix
(default: SHOME/ .local/easybuild)

* |ocation of build directories (recommended: /tmp, /dev/shm, ...)
* also: modules tool, syntax for module files, ...

via configuration files, environment or command line options

18

Configuration
* X \\/C/iuixl-RI

limited to no required configuration, except build users for daemon

software is installed into /gnu/store (hard to change)

* X 7’:. Nix
limited to no required configuration, except build users for daemon

software is installed into /nix/store (hard to change)

@ Spack

software is installed into <spack>/opt/spack (easy to change)

several optional configuration settings available

19

Basic usage CONDA

%k

first, create a conda environment:

conda create --prefix SHOME/my fftw

activate the environment to install (& use) the software:

source activate SHOME/my fftw

installing software into current conda environment:

conda install -c conda-forge fftw

to install other software (versions), either:
I. try to find a conda package for it somewhere (other channel, ...)

ii. create/update meta.yaml (and build. sh) and build package yourself
conda build recipe

conda install --local recipe

20

Basic usage ‘% edsy\bm 3
* % %k

search for available easyconfig files

eb --search fftw

install software (+ toolchain/dependencies) by specifying an easyconfig:

eb FFTW-3.3.7-gompi-2018a.eb --robot

to use the software, load the corresponding generate module file:

module load FFTW/3.3.7-gompi-2018a

to install other software versions (or use another toolchain), either:
i. find an easyconfig file (+ easyblock, if needed) for it somewhere
Ii. adjust an existing easyconfig file, or use eb --try-*

lii. compose an easyconfig file yourself (+ easyblock for complex software)

21

Basic usage 7t Nix
% %k

searching for available software

nix-env -ga 'fftw.*'

installing software (all 3 variants of FFTW, for different precisions)

nix-env —--install 'fftw.*'

installations are added to your Nix profile by default, so ready to use

to install other software (versions):
e customise existing Nix package, then nix-env --install

e new Nix package + build script, then nix-env --install -f

22

Basic usage “VGuixHc
%k X

searching for available software

gulx package --search fftw

installing software

gulix package --install=fftw
installations are added to your Guix profile by default, so ready to use

to install other software (versions):
e update existing package file, run guix package -i <software>

e define package (in Scheme), run guix package -f pkg.scm

23

Basic usage @ Spack

install software (+ dependencies) with system compilers

spack install fftw

install software (+ dependencies) with a particular compiler

spack install gcc@6.4.0
spack compiler add opt/spack/spack/linux-*/gcc-6.4.0
spack install fftw %gcc@6.4.0

to use the software, load it:

spack load fftw or spack load fftw %gcc@6.4.0

to install other software (versions):
e spack install foo@new-version (if you're lucky)

* or maybe need update the 'spackage' (<software>/package.py)
24

Time to result

quick installation when binary packages are used/favoured:

* kK Kk CONDA “VfGuixrrc Ag Nix

slower installation when software is built from source
(but usually fully autonomous)

60\57\3\\'\\& * %k @ Spack

EasyBuild requires toolchain to be available (usually also built from source)
(existing compilers & libraries can be leveraged too if desired)

Spack picks up system compilers by default

Spack is also looking into "architecture-aware" binary packaging

(see Todd's presentation next!)

25

Time to result: installing FFTW

(using latest release of each tool)

CONDA (beTW 3;3':)
**** Inary INSta
~25 sec.

FFTW 3.3.5
\\Iauixl-lt

(binary install)

*AKK ~25min
AN, ... FFTW 3.3.7
./?\' Nix (binary install)

**** ~10 sec.

ﬁ ;, eas)/\:u\\é FFTW 3.3.7
- (from source)

deps (incl. toolchain): ~32 min.
build & install FFTW: ~6 min.

testing: ~32 min. TOTAL: ~70 min.

@ Spack FFTW 3.3.6-pl2

(from source)

with system GCC: ~16min. (incl. deps)

with GCC 6.4.0: ~20 min. (incl. deps)
(+ 29 min. to first install GCC 6.4.0)

20

Performance of installed software

installing binary packages (usually) implies:

e installing generically compiled software

e software installations may not fully exploit system resources

e sacrificing lower runtime performance for quick installation

compiling from source allows specifically targeting system architecture

e gcc -02 -march=native ...
* |everage advanced processor features like AVX2, AVX512, ...

e trading portability of installations for better runtime performance

whether you care (much) or not depends heavily on context...

* quite important on supercomputers!

27

Performance of FFTW installation

single-core test from http://micro.stanford.edu/wiki/Install_FFTW3
e NO, N1 set to 8192 to obtain sufficiently ‘long’ run times

timings are for default installations (no tweaking)

test system: CentOS 7.4, Intel E5-2680v3 (Haswell-EP) 2.5GHz

system GCC (4.8.5)
or GCC 6.4.0
only SSE2 (ho AVXY)

)

| | GCC 6.4.0
AVX + AVX2

generically built binary packages, ~2X l
no AVX* instructions

result: slower software ‘ \

compiled from source
(can be) optimised for system architecture

time (seconds)

Spack EasyBuild

*hk | kk | kkk kkokk oz

http://micro.stanford.edu/wiki/Install_FFTW3

Performance of FFTW 11 tallation

single-core test from http://micro.stanford.edu/wiki/l. Wll_FFTW3

e NO, N1 set to 8192 to obtain sufficiently 'long' run tim really bad performance

with Spack 0.11.0 due
to building with -O0 :-/

timings are for default installations (no tweaking)

test system: CentOS 7.4, Intel E5-2680v3 (Haswell-E

system GCC (4.8.5)
or GCC 6.4.0
only SSE2 (ho AVXY)

ﬂ GCC 6.4.0
AVX + AVX2
generically built binary packages,
no AVX* instructions

result: slower software

time (seconds)

compiled from source
(can be) optimised for system architecture

] I |
Spack EasyBuild

*hk hdkK 2

http://micro.stanford.edu/wiki/Install_FFTW3

Other aspects we did not cover

e community
e unit & regression testing
* security

* Kkey features

=2
ISV
Y é'qk\\ih

B, easytm'\\a: support for combining multiple installation prefixes,

N
=

GitHub integration, distributed software installation, dry run mode,

packaging via FPM, support for user-defined hooks, ...

. \\Iauixl-lt ,'/.‘f. Nix : bitwise reproducibility of installations, ...

. @ Spack: (very) flexible dependency management,

support for binary caching, "virtual" packages (e.g. MPI), variants, ...

* (+ much more...)

30

And the winner is:

CONDA VGuixtrc| 7.3 Nix | € Spack
olatforms "i”\‘j\z’n;”:\ligs’ Linux, Cray | GNU/Linux Li”“Xl’J':}iCOS’ Li”“"égi‘/cos’
implementation Py?:&f/s’ Python 2 Scheme, Guile Ni)c(:z_l;éL) Python 2/3
supp. software > 3,500 > 2,000 < 6,500 > 13,000 > 2,300
releases,
install & update **
documentation) @ © ¢
configuration *** ** **
usage 1. 0.0, Y%k * * ok Y&k * * Kk
time to result | Y& Y A K XKk | kkkk | Kkk
performance * X . 0.0.0.¢ * % * X * % X
reproducibility | Aok * X *xk*k | kkkk * X

31

And the winner is: well, it depends...

e profile of person installing software + profile of end users

e scientist vs software developer vs HPC support team vs sysadmin

e prior experience with software installation & compilation

e can you figure things out if something fails?

e use case for the software you are installing
e only to play around with, or for production usage?

* handful of small experiments, or lots of large-scale calculations?

* whether you are concerned about time to result, reproducibility, security, ...

Mac

32

FOSDEM'18 talk making waves...

(before it actually happened...)

. @ Spack v0.11.1 budfix release
e quickly after v0.11.0 (first Spack release in ~ 1 year)

* important fix for accidental compilation with -O0

* problem encountered when testing performance of FFTW install

e easy installation script for\\/auixl-lic

* as reaction to my gquestions on manual installation procedure

e excellent blog post by Ludovic Courtés on portability vs performance

e triggered by FFTW performance comparison in draft presentation

* https://guix-hpc.bordeaux.inria.fr/blog/2018/01/pre-built-

binaries-vs-performance/
33

https://guix-hpc.bordeaux.inria.fr/blog/2018/01/pre-built-binaries-vs-performance/
https://guix-hpc.bordeaux.inria.fr/blog/2018/01/pre-built-binaries-vs-performance/

Other software build tools

e barely used in HPC context

Portage - https://wiki.gentoo.org/wiki/Portage * lack of support for

multi-user environments

e (Gentoo package management system
P J J y e fewer supported scientific

software packages

pkgsrc - https://www.pkgsrc.org

e cross-platform build system

e over 15,000 supported software packages!

Homebrew - https://brew.sh
e "the missing package manager for macOS"
e ported for Linux: http://linuxbrew.sh

* homebrew-science tap is no longer maintained :(

34

https://wiki.gentoo.org/wiki/Portage
https://www.pkgsrc.org
https://brew.sh
http://linuxbrew.sh

Containers for scientific software & HPC ¢

Q) singularity - http://singularity. Ibl.gov » strong focus on
"mobility of compute”
e "Docker for HPC" (no root daemon) e performance is often

e image-based containers sacrificed for portability :(

e existing Docker containers can be converted to Singularity images

* huge uptake in last 1.5 years in HPC community

» HPCwire articles: http://tiny.cc/singularity_lic, http://tiny.cc/singularity_sc17

udocker - https://github.com/indigo-dc/udocker

e tool to run Docker containers in user space (no root required)

* |everages other tools like Singularity, PRoot, runC

* recent HPCwire article: http://tiny.cc/hpcwire_udocker

35

http://singularity.lbl.gov
http://tiny.cc/singularity_llc
http://tiny.cc/singularity_sc17
https://github.com/indigo-dc/udocker
http://tiny.cc/hpcwire_udocker

