
SSSD: FROM AN LDAP
CLIENT TO SYSTEM
SECURITY SERVICES
DEAMON

ABOUT ME AND THE TALK
I'm a developer working for Red Hat, mostly on SSSD
Twitter:
Github:
This talk is about SSSD, but (hopefully) not about the known parts

@JakubHrozek
https://github.com/jhrozek/fosdem2018

https://twitter.com/JakubHrozek
https://github.com/jhrozek/fosdem2018

TALK TOPICS
Several topics, the talk might be fast

please get in touch for more details about any topic

SSSD APIs
Local user handling
Smart card management (for local users)
Kerberos ticket management

SSSD APIS
TALKING TO SSSD FROM AN APP

SSSD API USE-CASES
Many applications implement some sort of an "LDAP driver" or an "LDAP connector"

typically app-specific code, not reusable

The job is not as easy as it might sound

Server discovery, affinity, fail over, caching, different schemas
SSSD is a "domain expert", let's leverage it!

HOW DOES ONE TALK TO SSSD
API vs. plugin
SSSD already provided several plugins for system APIs

NSS - getent passwd $user -> getpwnam(3) -> _nss_sss_getpwnam
Nontrivial to call directly, only through the system API
Somewhat inflexible, e.g. getpwnam(3) can only return "struct passwd"

TALKING TO SSSD DIRECTLY
D-Bus API

Pros: many language bindings, type-safe, signals (notifications), introspection
Cons: Requires a system bus, some language bindings not that great
Currently used by several applications like ManageIQ, Keycloak,
mod_lookup_identity, ...

Would some other API be more appealing to a project?

REST perhaps?
ldapi:// ?

DEMO TIME
D-Bus API example compared to raw Python
Keep in mind the raw Python script doesn't to caching, failover, service discovery, ...
Two D-Bus examples

The OO one is more verbose but more flexible as well

all objects are represented with a path regardless of how was the object found
signals (notifications)

https://github.com/jhrozek/fosdem2018/tree/master/dbus-api

https://github.com/jhrozek/fosdem2018/tree/master/dbus-api

MANAGING LOCAL USERS
SSSD AND /ETC/{PASSWD,GROUP}

MOTIVATION
Faster NSS API access without nscd
Leverage the same APIs for local and remote users
Additional attributes
Smart cards for local users

separate section later

CURRENT STATUS
Caching enabled in Fedora since F-26

sssd is running by default
/etc/passwd and group are mirrored into sssd on-disk cache
any request triggers putting the user or group entry into mmap-ed cache
without nscd or sssd, a request would trigger opening and parsing the files

Pros: Interoperates easily with other SSSD domains, unlike nscd
Cons: SSSD is "fatter" than nscd, requires modifications to nsswitch.conf

This doesn't require sssd to be running, though!

https://fedoraproject.org/wiki/Changes/SSSDCacheForLocalUsers

passwd: sss files

https://fedoraproject.org/wiki/Changes/SSSDCacheForLocalUsers

FUTURE DEVELOPMENT
Improve the smart card integration for local users

More on this later in this presentation..

Enable extending the SSSD database with extra attributes

Currently the 'sss_override' tool can be used to add certs, but there's no general API

Extend the D-Bus API to enable user database modifications

probably backed by libuser?

Implement the https://www.freedesktop.org/wiki/Software/AccountsService/ API to get
a consistent API for local and remote users
Hopefully will happen this year...

SMART CARDS WITH SSSD
FOR LOCAL AND REMOTE USERS

DISCLAIMER
I'm not a Smart Cards expert
The previous Jakub is

https://fosdem.org/2018/schedule/event/smartcards_in_linux/
https://www.youtube.com/watch?v=x2mpba45UVc

Not even expert in this part of SSSD
Nonetheless, let's illustrate the state

CURRENT STATE
Traditionally, pam_pkcs11 had been used

lot of features, stable
also dead upstream..
doesn't build against recent OpenSSL, was removed from Fedora

SSSD in the meantime gained support primarily for remote users

FreeIPA/IDM + AD trusts is the main scenario

match or list user(s) against a certificate stored in the directory
"local" authentication with the help of the keys on the smart card or Kerberos
PKINIT

UsableFunctional for local users as well already

SMART CARDS FOR LOCAL USERS
Several manual configuration changes needed now
SSSD must be serving users from local files
Works with anything that implements the pkcs11 interface

the demo is using a Yubikey

The user database must augmented with the certificate
pam_sss, not pam_unix must be handling authentication
Should work in a user-friendly manner in Fedora-29

DEMO TIME
Smart card authentication with SSSD and a local user

SSSD-KCM
LET SSSD HANDLE YOUR KRB5 TICKETS

WHERE'S MY TICKET?
Any successful Kerberos authentication yields a "ticket"

KDC initial authentication (kinit) -> TGT
service authentication -> service ticket

A blob that must be stored in a credential cache
Several options

FILE, DIR, KEYRING, KCM ...

KCM AND SSSD-KCM
KCM is not our idea
Comes from the Heimdal Kerberos distribution, circa 2005
The credentials are handled by a daemon

All the other credential cache types are "passive"
The application (e.g. kinit) is a client, KCM daemon is a server
Client talks to the KCM server over a UNIX socket

At the moment, Heimdal implements both server and client, MIT only the client

you can mix and match, though

KCM CCACHE BENEFITS
Stateful

renewals, notifications, cleanup of expired caches or on logout ...

Credentials are not written to disk
Better suited for containers

UNIX socket can be selectively shared between containers or container and host
The KCM deamon is subject to namespacing (root in container vs. root on host)
Do people use Kerberos with containers, though?

SSSD-KCM
SSSD-KCM is an implementation of the KCM server

reuses a lot of SSSD code, but doesn't need the rest of SSSD
systemctl enable sssd-kcm.socket should be enough
planning to use some private SSSD APIs for advanced features (notifications, ...)

Default Kerberos cache in Fedora since F-27

some open bugs, though..

Feature-wise equivalent to other ccache types, more improvements planned for F-29

renewals
notifications
...and more

MORE RESOURCES
SSSD upstream design page:

MIT documentation

https://docs.pagure.org/SSSD.sssd/design_pages/kcm.html

http://k5wiki.kerberos.org/wiki/Projects/KCM_client

https://docs.pagure.org/SSSD.sssd/design_pages/kcm.html
http://k5wiki.kerberos.org/wiki/Projects/KCM_client

QUESTIONS?
THANK YOU FOR LISTENING!

