
How to make package managers cry

1

Kenneth Hoste  
kenneth.hoste@ugent.be GitHub: @boegel Twitter: @kehoste

 FOSDEM 2018

Package Management devroom
Feb 3rd 2018, Brussels (Belgium)

How to piss off package managers
(or)

(pick one)

mailto:kenneth.hoste@ugent.be
http://twitter.com/kehoste

2

• "package managers" (people) in the broad sense

• anyone who needs to "install" software every now and then

• slight focus on scientific software

• some personal bias as lead developer of

• framework to install (scientific) software on HPC systems

• http://easybuilders.github.io/easybuild

• disclaimer: most of what I'm showing are not my ideas...

Context

http://easybuilders.github.io/easybuild

3

Goals

• present techniques to make software difficult to install

• mention excuses to get away with using them yourself

• how to score bonus points by taking things to the extreme

• examples of projects that have done a (really) good job

4

WARNING
This talk is meant to have a clear sarcastic tone. 

Please do NOT take it too seriously.

It is meant to be an eye-opener regarding 
"bad" practices in software installation procedures.

Please do NOT interpret the given 'advice' as genuine.

I do NOT want to insult particular people or projects.

5

• create confusion

• surprise people (but not in a good way)

• annoy people

• trigger frustration

• aim for wasting (human) time

Common aspects of mentioned techniques

6

• try to get less people to use your software

• they may find bugs, which you will need to fix

• they may ask questions, or submit feature requests...

• avoid getting contributions

• requires reviewing & testing

• you will need to maintain the features they contribute!

• if they can't install your software, they will give up quickly

• also, motivate more people to use tools like

Reasons to employ these techniques

7

• don't use semantic versioning (don't see https://semver.org)

• make minor changes to releases, without bumping version

• don't do bugfix releases

• tell people to check GitHub repository for updates

• create a webpage with instructions on how to fix known bugs

• total lack of proper releases/versions

• just a master branch in a GitHub repo, no tags/versions

• let people come up with their own versioning scheme!

• remove old versions, do not keep an archive of previous releases

I. Creative software versioning & releasing

https://semver.org

8

• excuses you can use:

• "It was just a really tiny change, no need for a new version"

• "Versions are not as important as they used to be."

• "You should always use the latest available 'version'."

• "Old versions had bugs, so they shouldn't be used anymore."

• bonus points:

• have very strict version requirements for dependencies

• clearly motivate your (lack of) versioning policy

I. Creative software versioning & releasing

9

OpenFOAM: no more (proper) bugfix releases

(taken from https://openfoam.org/news/v5-0-patch)

https://openfoam.org/news/v5-0-patch

10

WRF: instructions to fix known problems

(taken from http://www2.mmm.ucar.edu/wrf/users/wrfv3.7/known-prob-3.7.1.html)

http://www2.mmm.ucar.edu/wrf/users/wrfv3.7/known-prob-3.7.1.html

11

Bioconductor 'releases', no old versions

• creative interpretation of 'releases'

• bundle of R packages with a particular release version (e.g. 3.6)

• versions included in latest release get bumped...

• ... without bumping the overall version of the bundle

• individual packages are not (always) archived

• version bump in latest release implies *removing* old version

• "nobody should use it anymore, it had bugs"

http://bioconductor.org

http://bioconductor.org

12

• leave people guessing what has changed

• at the very least make release notes very vague

• "minor enhancements & bug fixes"

• excuses you can use:

• "See commit history on GitHub for more details."

• bonus points:

• mention release notes are "coming soon" 
(and then never provide them)

II. Don't provide release notes/changelog

13

• ship copies of required dependencies with your software

• excuses you can use:

• "Makes installation easier."

• "We know best how dependencies should be installed."

• bonus points

• postpone updating included dependencies as long as possible

• make some minor adjustments (and don't contribute back)

• only include some dependencies

III. Vendoring dependencies

14

• download & install dependencies during installation process

• excuses you can use:

• "Makes installation easier."

• "It's not unfair to assume that internet is reachable."

• bonus points

• don't properly document dependencies

• make it difficult to provide dependencies via another way

• only do this for some dependencies

• change your mind at some point to surprise people

IV. Automagic installation of dependencies

15

• more dependencies implies more stuff to be installed

• try to favour dependencies that are hard to install themselves

• excuses you can use:

• "I don't want to re-invent the wheel."

• bonus points:

• mix different programming languages

• make your software a common dependency, and rule the world

V. More dependencies is better

16

• https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos

• > 250 JavaScript modules removed from NPM

• including some very popular ones like 'left-pad'

• a tiny (trivial) module to 'indent' strings

• lots of stuff depended on left-pad, including Node.js

• removing of left-pad from NPM broke half the Internet!

left-pad success story

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos

17

QIIME dependency hell

• bioinformatics software (https://qiime2.org)

• requires Python, Perl, R, Haskell, OCaml, ...

• released as VM, containers (don't do this, let people install)

https://qiime2.org

18

WARNING
This talk is meant to have a clear sarcastic tone. 

Please do NOT take it too seriously.

It is meant to be an eye-opener regarding 
"bad" practices in software installation procedures.

Please do NOT interpret the given 'advice' as genuine.

I do NOT want to insult particular people or projects.

19

• hardcode as much as possible:

• names of commands, in particular compilers (gcc, g++)

• compiler options, (no) optimisation flags
(pro tip: default for GCC is -O0!), ...

• locations of libraries, header files, even commands!

• versions of dependencies

• excuses you can use:

• "We expect a standard environment."

• "We can't support all possible environments out there."

VI. Hardcoding FTW!

20

• prefer using tools that people are not familiar with (yet)

• switch to something else when a tool becomes 'mainstream'

• use popular tools that nobody likes

• use tools with 'special' behaviour

• resetting or taking control of the environment

• hard to debug/fix when something goes 'wrong'

• or use your own scripts rather than an existing tool

• or at least create wrappers around tools people know

VII. Choose your tools wisely (or don't choose)

21

• excuses you can use:

• "These modern tools are a lot better."

• "We can't keep living in the past, we need to move forward."

• "I prefer to use my own scripts."

• bonus points

• don't use the tools as they're intended to be used

• require an ancient or very recent version for some reason

• name your own scripts after existing tools ('./configure')

VII. Choose your tools wisely (or don't choose)

22

• http://scons.org

• "a next-generation build tool"

• "improved, cross-platform substitute for classic Make utility"

• resets environment in which commands are executed

• $PATH is reset to /usr/local/bin:/bin:/usr/bin

• can't find commands installed in a non-standard location

• (can be controlled via $ENV construction variable, don't tell anyone)

http://scons.org

23

• https://bazel.build

• uses hardcoded locations for compilers, etc.

• /usr/bin/{ar,cpp,gcc,ld}, /usr/lib/gcc, /usr/include, ...

• takes control over environment (like SCons does)

• confusing command line options:

'-copt', '-config=opt' and '-c opt' are three different things!

• weird syntax:
bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package

https://bazel.build

24

• popular configuration & build tool, but nobody really likes it

• OK if all goes well, but if stuff goes wrong you're in trouble

• hard to figure out what's really wrong

• convincing CMake to behave is even more challenging

• excuses:

• You don't really need one, everybody uses it already!

25

• no configuration mechanism (just hardcoding)

• no test suite

• no support for installing build artefacts somewhere else

• excuses

• "Not really needed, it's pretty trivial."

• bonus points:

• provide a test suite, but include broken tests!

• hide build artefacts in multiple (deep) subdirectories

VIII. Partial installation procedure

26

• ask questions, only accept specific answers (numbers, words)

• try to make it hard to automate

• provide a fallback "silent" mechanism for your own sanity
(but don't document it!)

• excuses you can use:

• "Interactive scripts are more intuitive."

• bonus points:

• numbered list of possible answers, change it over releases

IX. Interactive scripts

27

• https://www.tensorflow.org

• Python library for machine learning/deep learning

• originally developed by Google Brain team

• most forked GitHub project in 2017 (5th in #contributors)

• very popular in scientific research thanks to deep learning hype

• great performance on GPU \o/

https://www.tensorflow.org

28

• binary Python 'wheels' are made available via PyPI

• incentive to install it from source for good performance

0

1

2

3

4

5

6

binary	wheel built	from	source

im
ag
es
/s
ec
on
d

ResNet-50	on	Intel	Haswell	(CPU	only)

7x s
peedup

29

• interactive "./configure" script (not Autotools as you may expect)

• also picks up $TF_NEED_* env vars (undocumented)

• uses B azel as build tool

• resets environment, hardcodes compiler & co to /usr/...

• auto-installs some dependencies (but not Python, CUDA, cuDNN)

• need to "pip install" self-built Python wheel...

30

• tons of things you can do to make your software hard to install

• goals: confusion, surprise, annoyance, frustration, wasting time

• people can't complain about software they can't get to run

• lots of projects out there with good ideas, leverage them

• good excuses are not that hard to come up with

• be creative, go for bonus points!

Conclusions

31

WARNING
This talk is meant to have a clear sarcastic tone. 

Please do NOT take it too seriously.

It is meant to be an eye-opener regarding 
"bad" practices in software installation procedures.

Please do NOT interpret the given 'advice' as genuine.

I do NOT want to insult particular people or projects.

