Tying software deployment to
scientific workflows

Using GNU Guix to make software deployment a first-class citizen

Ludovic Courtés

FOSDEM 2018

Guix in a nutshell.

$ guix package --install gcc-toolchain openmpi hwloc

$ eval ‘guix package --search-paths

$ guix package --manifest=my-packages.scm

$ guix package --roll-back

bob@laptop$ guix pull --commit=cabbale
bob@laptop$ guix package -i gcc-toolchain openblas

bob@laptop$ guix pull --commit=cabbale
bob@laptop$ guix package -i gcc-toolchain openblas

alice@supercomp$ guix pull --commit=cabbae
alice@supercomp$ guix package -i gcc-toolchain openblas

bob@laptop$ guix pull --commit=cabbale
bob@laptop$ guix package -i gcc-toolchain openblas

alice@supercomp$ guix pull --commit=cabbae
alice@supercomp$ guix package -i gcc-toolchain openblas

$ guix build hwloc \
--with-source=./hwloc-2.0rcl.tar.gz

$ guix build hwloc \
--with-source=./hwloc-2.0rcl.tar.gz

$ guix package -i mumps --with-input=scotch=pt-scotch

$ guix build hwloc \
--with-source=./hwloc-2.0rcl.tar.gz

$ guix package -i mumps --with-input=scotch=pt-scotch

$ guix package -i julia --with-input=fftw=fftw-avx

» started in 2012

» 6,800+ packages, all free software
» X86_64, 1686, ARMv7, AArch64

» binaries at https://hydra.gnu.org
» 0.14.0 released in December 2017

https://hydra.gnu.org

‘ ' ‘Guix

https://guix-hpc.bordeaux.inria.fr

https://guix-hpc.bordeaux.inria.fr

3
N §
Nt -
M et 8 g "
? e s * i,
>

B e
The§|:;hipé1ago of “tools that do one thing.”

R I
hdie a8

Reproducible deployment
at the center of the stage.

“Package management”

$ guix package -i openfoam emacs

“Virtual environments”

$ git clone https://.../petsc
$ cd petsc

$ guix environment petsc
[env]$./configure && make

Container provisioning

$ guix pack hwloc

/gnu/store/...-pack.tar.gz

Container provisioning

$ guix pack --format=docker hwloc

/gnu/store/...~docker-image.tar.gz

Intermezzo: the
programming language
underpinnings

expression

(system* "/bin/lstopo")

staged expression

’(system* "/bin/lstopo")

deployment-aware staged expression

#” (systemx #$(file-append hwloc "/bin/lstopo"))

Guix Workflow Language

http://www.guixwl.org

http://www.guixwl.org

Workflow

[Initial dataset

[Undeniable proof]

define-module
test
use-modules
guix workflows
guix processes
gnu packages bioinformatics
gnu packages python

process: simple-test
package-inputs
list python samtools
data-inputs
list "sample.bam" "hg38.fa"
procedure #---python
import os
print "hello from python 3"

n abcll

guix workflow --run=example \
-i input.dat -o output.dat \
--engine=grid-engine

Towards transparency

editorial

Sharing data is key for efficient scientific progress. More open code would be beneficial too.

Science thrives on reproducibility. In the
politicized realm of the climate sciences, for
example, it has long been good practice to
have three independent reconstructions of the
global temperature record' . And still, when a
fourth one appeared*, largely confirmatory of
the existing three, it was greeted with a media
storm — mainly because the authors had
emphasized their independence of the entire
climate science community in the run-up to
the announcement of their work®.

Two ingredients are essential for
reproducibility in any field in science: full
disclosure of the methods used to obtain and
analyse data, and availability of the data that
went into and came out of the analysis. Data
disclosure has long been one of our policies.

papers, which must include information on
how to obtain code and a description of any
limitations to its availability.

Sharing code is not always simple. As
argued in a Commentary on page 779 in
this issue, complex code such as that used in
global climate models cannot easily be used
by others in a meaningful way. In general,
substantial effort is required to make a
complex piece of software run on a different
machine, and in some cases, it may not be
possible. There can also be other technical,
legal and commercial restrictions to code
sharing. In recognition of these difficulties,
Nature journals do not mandate that code be
made fully available, and instead only require
that the underlying equations be published

data, not only for scientific progress, but also
for the careers of individuals, are slowly being
recognized. Nevertheless, more incentives
are needed to encourage researchers to
transfer their private data archives to public
repositories together with all the necessary
metadata, as suggested in a Commentary on
page 778 in this issue.

Making fully annotated, high-quality
data publicly available for re-use already
brings recognition, citations and professional
collaborations to individuals, and much faster
progress to science. Many of these benefits
could equally apply to code sharing, once
it is established as best practice, and fully
recognized as part of the scientific endeavour.
We are hoping that our code-sharing policy

Reviewing computational methods

Assessing papers that report (or use) computational methods is demanding for referees, but
peer review of these methods and related software is crucial for biological research.

Two years ago, we released guidelines for submitting
papers describing new algorithms and software to Nature
Methods. We have continued to publish a good number
of such papers since then. In 2014 alone, we published
about 50 papers in which an algorithmic development or
software tool is central to the work; roughly 98% provide
access to software, and at least 75% provide source code.

Easy-to-use software is essential for getting a method
into the hands of many scientists. Source code makes
the method transparent for developers and allows others
to build on the work. Making these available as part of
a methods paper is necessary but not sufficient; ideally,
both must be explicitly assessed during peer review.

continuum between a new algorithm and a new software
implementation of existing algorithms. On top of this,
assessing whether software is usable and works well seems
to mean different things to different people—some check
for adequate documentation, others go through code, and
still others run the software. Without a systematic process
in which expectations for referees are made clear, review
of such papers is bound to remain variable. We will make
improvements along these lines to our review process.

In addition, assessing the general usability of software
is difficult. Even if a referee determines that software
runs well with the provided sample data, for instance,
it might not do so with other data. Factors such as the

e Artifacts Evaluated — Functional @

The artifacts associated with the research are found to be documented, consistent, complete,
exercisable, and include appropriate evidence of verification and validation.

o Notes

= Documented: At minimum, an inventory of artifacts is included, and sufficient description
provided to enable the artifacts to be exercised.

» Consistent: The artifacts are relevant to the associated paper, and contribute in some inherent
way to the generation of its main results.

= Complete: To the extent possible, all components relevant to the paper in question are included.
(Proprietary artifacts need not be included. If they are required to exercise the package then
this should be documented, along with instructions on how to obtain them. Proxies for
proprietary data should be included so as to demonstrate the analysis.)

s Exercisable: Included scripts and/or software used to generate the results in the associated
paper can be successfully executed, and included data can be accessed and appropriately
manipulated.

The ReScience Journal ABOUT READ WRITE EDIT BOARD FAQ

Reproducible Science is good. Replicated Science is better.

ReScience is a peer-reviewed journal that targets computational research and encourages the explicit
replication of already published research, promoting new and open-source implementations in order to
ensure that the original research is reproducible.

To achieve this goal, the whole publishing chain is radically different from other traditional scientific
journals. ReScience lives on GitHub where each new implementation of a computational study is made
available together with comments, explanations and tests. Each submission takes the form of a pull
request that is publicly reviewed and tested in order to guarantee that any researcher can re-use it. If
you ever replicated computational results from the literature in your research, ReScience is the perfect
place to publish your new implementation.

The ReScience Journal

Software Heritage

The ReScience Journal

Software Heritage

v Guix

The ReScience Journal

Let’s connect the bits!

V&uixl—RZ

guix-hpc@gnu.org
https://hpc.guixsd.org/

https://hpc.guixsd.org/

Copyright © 2010, 2012-2018 Ludovic Courtes 1udo@gnu. org.

GNU Guix logo, CC-BY-SA 4.0, http://gnu.org/s/guix/graphics Workflow graph by Roel Janssen Galapagos satellite image,
public domain (Earth Observatory 8270 and NASA GSFC) Hand-drawn arrows by Freepik from flaticon.com
Copyright of other images included in this document is held by their respective owners.

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300,
San Francisco, California, 94105, USA.

At your option, you may instead copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/gfdl.html.

The source of this document is available from http://git.sv.gnu.org/cgit/guix/maintenance.git.

http://gnu.org/s/guix/graphics
http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/licenses/gfdl.html
http://git.sv.gnu.org/cgit/guix/maintenance.git

