
A tour of point cloud processing
Mathieu Carette
Notebook available at https://github.com/rockestate/point-cloud-processing (https://github.com/rockestate/point-cloud-processing)

Slides available at https://www.rockestate.be/point-cloud-processing/presentation/ (https://www.rockestate.be/point-cloud-processing/presentation/)

(previous versions here (https://github.com/rockestate/point-cloud-processing/releases))

About me
PhD in Mathematics (ULB, 2009)
Postdocs (UIUC, UCLouvain, McGill)
Data Scientist (KBC, Forespell)
Now working on

ROCKESTATE
(https://www.rockestate.be)

Favorite software stack:

Where do 3D point clouds come from?

Click here to hide/show the code

Out[2]:

Terrapoint Aerial Services - LiDAR Flight Sim…



Open LiDAR data for Brussels and Flanders : https://remotesensing.agiv.be/opendata/lidar/ (https://remotesensing.agiv.be/opendata/lidar/)

File formats and software
LAS (https://www.asprs.org/committee-general/laser-las-file-format-exchange-activities.html) standard file format

LAZ (https://www.laszip.org/) compressed file format

PCL (http://pointclouds.org/) Point Cloud Library

Open source: https://github.com/PointCloudLibrary/pcl (https://github.com/PointCloudLibrary/pcl)

C++

Powerful general purpose algorithms

CGAL (https://www.cgal.org/) Computational Geometry Algorithms Library

Open source: https://github.com/CGAL/cgal (https://github.com/CGAL/cgal)

C++

State of the art 2D and 3D geometry algorithms

PDAL (https://www.pdal.io) Point Data Abstraction Library

Open source: https://github.com/PDAL/PDAL (https://github.com/PDAL/PDAL)

C++, command-line, python

Wraps some PCL functionality

For windows users: part of the OSGeo4W (https://trac.osgeo.org/osgeo4w/) distribution

LAStools (https://rapidlasso.com/lastools/) from RapidLasso

Proprietary, preferred pricing for academic use

Windows only, runs on wine

command-line, GUI

Open source laszip (https://www.laszip.org) compression/decompression: https://github.com/LASzip/LASzip

(https://github.com/LASzip/LASzip)

Let's process some point clouds



Selecting street portion with a polygon

POLYGON ((150687.8518289287 167058.3858805448, 150939.3740217351 167072.33228858, 150980.4548986266 16674

3.7380920332, 150919.5663185167 166714.6929215267, 150754.0807228128 166712.885090881, 150581.449810213 1

66933.4497666787, 150687.8518289287 167058.3858805448)) 

CPU times: user 15.9 s, sys: 318 ms, total: 16.2 s 

Wall time: 16.3 s 

Pipeline selected 473184 points (4.4 pts/m2) 



Original data



Use gound / non-ground classification

Use point flatness to separate trees from the rest



Find treetops as local maxima

Separate trees using closest treetop



Model each tree individually

Final street model

Building Modeling



Selecting building with a polygon

Original data

POLYGON ((150876.6899425487 166855.1808815384, 150913.4053620266 166873.7645316971, 150904.3812825281 166

890.1151175071, 150861.390885691 166886.3253158694, 150876.6899425487 166855.1808815384)) 

CPU times: user 5.39 s, sys: 880 ms, total: 6.27 s 

Wall time: 6.5 s 

Pipeline selected 31223 points (28.8 pts/m2) 



Visualize normals

Infer building orientation using normals



Align building orientation along X-Y axes

Model the building using axis-aligned view



Rotate back to original coordinate system

Add texture from aerial imagery

Things to look out for

pdal
Fast point-in-polygon algorithm implemented
Apache arrow support
Conda packaging



jupyter
C++ jupyter kernels
Jupyterlab

Thank you!


