Rendering map data with Python and Mapnik

From Bits To Pictures

Hartmut Holzgraefe
hartmut@php.net

FOSDEM - Feb. 4th, 2018

eb. 4th, 2018 1/ 56

Speaker notes

o Hartmut Holzgraefe

o from Bielefeld, Germany

o Studied electric engineering, computer science, and
biology

o OpenStreetMapper since 2007

@ Principal Database Support Engineer at MariaDB
Corp.
(and previously MySQL, Sun, Oracle, SkySQL)

Python Mapnik FOSDEM - Feb. 4th, 2018

Speaker notes

Mapnik Overview

o Mapnik Overview

Python Mapnik FOSDEM - Feb. 4th, 2018

Speaker notes

Mapnik Overview

I

N MAPNTIK
p > library [P
U

T

HgmwmAgo

Python Mapnik FOSDEM - Feb. 4th

Speaker notes

We need a tool that converts map data to pretty pictures.
For this we need to be able to:

e read different map data formats

e apply different styles to data we read

e create pictures in different formats from this
e be able to control operations with code

e and to draw extra stuff on top of the map somehow

I

N MAPNTIK
p > library [P
U

T

HgmwmAgo

Python Mapnik FOSDEM - Feb. 4th, 2018

Speaker notes

Mapnik can read map data from many different sources:

o Shapefiles
o SQL database result sets
o GeolJson
Multiple other formats via plugins:
o ... OGR for various vector and raster formats, e.g. OSM XML
and GPX
o ... GDAL for various raster formats

Python Mapnik FOSDEM - Feb. 4tl

Speaker notes

See also:
https://github.com/mapnik/mapnik/wiki/PluginArchitecture
https://github.com/mapnik/mapnik/wiki/0GR
https://github.com/mapnik/mapnik/wiki/GDAL

https://github.com/mapnik/mapnik/wiki/PluginArchitecture
https://github.com/mapnik/mapnik/wiki/OGR
https://github.com/mapnik/mapnik/wiki/GDAL

I

N MAPNTIK
p > library [P
U

T

HdmHAddo

Python Mapnik FOSDEM - Feb. 4th, 2018

Speaker notes

Mapnik can produce output in various formats

e PNG (32bit and 8bit)
e JPG

e SVG

e PDF

o PostScript

Python Mapnik FOSDEM - Feb. 4th, 2018 8/ 56

Speaker notes

Rendered by either AGG or Cairo Graphics. We focus on Cairo here.
See also https://github.com/mapnik/mapnik/wiki/OutputFormats

https://github.com/mapnik/mapnik/wiki/OutputFormats

I

N MAPNTIK
p > library [P
U

T

HgmwmAgo

Python Mapnik FOSDEM - Feb. 4th, 2018

Speaker notes

How data is rendered is defined by styles:

o Styles can be defined in program code
o or via XML style files

o Some other style formats can be converted into Mapnik XML
(mostly CartoCSS at this time)

Python Mapnik FOSDEM - Feb. 4th, 2018 10 / 56

Speaker notes

I

N MAPNTIEK
p > library [P
U

T

HgmwmAgo

Python Mapnik FOSDEM - Feb. 4th, 2018 11/ 56

Speaker notes

Control Code

Mapnik comes as a library written in C++, not a full application. So some
extra code is needed to actually make it work.

@ native C++

@ Python bindings

o Experimental bindings for PHP 7

Python Mapnik FOSDEM - Feb. 4th, 2018 12 / 56

Speaker notes

Python Bindings used to be bundled with Mapnik v2, but are now a
standalone project https://github.com/mapnik/python-mapnik

PHP bindings https://github.com/garrettrayj/php7-mapnik

https://github.com/mapnik/python-mapnik
https://github.com/garrettrayj/php7-mapnik

@ Prequisites

Python Mapnik FOSDEM - Feb. 4th, 2018 13 / 56

Speaker notes

We need the following components:
@ Python (2 or 3)
o Mapnik 3 (27)
@ Python bindings for Mapnik, Cairo, and Pango

Python Mapnik FOSDEM - Feb. 4th, 2018 14 / 56

Speaker notes

The code we're going to show is pretty simple and should work with both
Python version 2 and 3, unless explicitly stating differences.

The Mapnik specific code should also work with both Mapnik versions 2
and 3, but this was not tested.

Python and Mapnik version numbers only match by coincidence.

Installation

Debian/Ubuntu:

1| apt-get install \
2| python3-mapnik \
3| girl.2-pango-1.0 \
4 girl.2-rsvg-2.0 \
5 python3-gi-cairo

Python Mapnik FOSDEM - Feb. 4th, 2018 15 / 56

Speaker notes

TODO

Points, Lines and Polygons

© Points, Lines and Polygons

Python Mapnik FOSDEM - Feb. 4th, 2018 16 / 56

Speaker notes

Lines and Polygons:

All Mapnik data sources provide geo data as a collection of
@ Points
o Lines
e Polygons

@ Raster Images

Depending on the underlying data source some conversions may happen
on the way.

All geo objects may have additional attributes that you can filter by, or use
to decide how to display them (e.g. “name” text)

Python Mapnik FOSDEM - Feb. 4th, 2018 17 / 56

Speaker notes

Layers, Styles and Symbolizers

@ Layers, Styles and Symbolizers

Python Mapnik

Speaker notes

A Mapnik Layer is importing some data
using one of the available data sources
and binds it to one or more styles

to present the imported data.

Python Mapnik FOSDEM - Feb. 4th, 2018 19 / 56

Speaker notes

A Style can filter imported data and defines which
symbolizer(s) to use to present the data.

Python Mapnik FOSDEM - Feb. 4th, 2018 20 / 56

Speaker notes

Symbolizers

Symbolizers perform the actual rendering of data. There
are four basic types:

o PointSymbolizer

o LineSymbolizer

o PolygonSymbolizer

o RasterSymbolizer

Python Mapnik FOSDEM - Feb. 4th, 2018 21 / 56

Speaker notes

We get to these in detail later

Symbolizers (cont.)

@ MarkerSymbolizer

o LinePatterSymbolizer

@ TextSymbolizer

@ ShieldSymbolizer

@ PolygonPatternSymbolizer
o BuildingSymbolizer

Python Mapnik FOSDEM - Feb. 4th, 2018 22 / 56

Speaker notes

We get to these in detail later

@ Code basics

Python Mapnik FOSDEM - Feb. 4th, 2018

Speaker notes

A no-op example

1| import mapnik

2

3lmap = mapnik.Map(600,300)
4

5

mapnik.render_to_file(map, ’world.png’, ’png’)

Python Mapnik

Speaker notes

This is the minimal Mapnik program in python.
We're just importing the Mapnik bindings, creating a map object with
given pixel size, and write it to a PNG image right away.

and its result

ImageMagick: world.png

Python Mapnik

Speaker notes

Obviously there is nothing on the map yet, it is totally empty and
transparent.

minimal example

import mapnik

map = mapnik.Map (600,300)
map.background = mapnik.Color (’steelblue’)

polygons = mapnik.PolygonSymbolizer ()
polygons.fill = mapnik.Color(’lightgreen’)

rules = mapnik.Rule ()
rules.symbols.append(polygons)

style = mapnik.Style ()
style.rules.append(rules)
map.append_style (’Countries’, style)

layer = mapnik.Layer (’world’)
layer.datasource = mapnik.Shapefile(file=’countries.shp’)
layer.styles.append(’Countries’)

map.layers.append(layer)
map.zoom_all ()
mapnik.render_to_file(map, ’world.png’, ’png’)

Speaker notes

So lets add some content. First we're making the background blue
instead of transparent.
Then we

e set up a polygon Symbolizer that just fills polygons with green color

create a Rule that simply applies the polygon Symbolizer to every polyon

.

create a Style, add the Rule to it, and then add it to the Map by name
“Countries”

create a Layer named “world”

set a Shapefile containing all country borders as data source

bind the style we created earlier to this layer

add the layer to the map

make sure all data is shown with zoom_al1()

and write the output to a file again

| ImageMagick: world.png

—

Hartmut H) Python Mapnik

Speaker notes

Now we actually see a world map, with green continents on a blue
background.

We also see country borders even though we didn't define any style for
these, so where did these come from?

The borders are actually artifact due to antialiasing being applied to the
polygon edges. When turning off antialiasing with gamma=0.0 these
artifacts will vanish.

Finding Germany

[...]

polygons = mapnik.PolygonSymbolizer ()
polygons.fill = mapnik.Color(’green’)
polygons.gamma = 0.0

rules.symbols.append (polygons)
style.rules.append(rules)

highlight = mapnik.PolygonSymbolizer ()
highlight.fill = mapnik.Color (’red’)

germany = mapnik.Rule()

germany.filter = mapnik.Expression("[NAME] =
Germany’")

germany .symbols.append (highlight)

style.rules.append(germany)
map.append_style(’Countries’, style)
]

Python Mapnik

Speaker notes

Now lets add a second rule to the style that only renders a specific object.
For this we first create a 2nd polygon symbolizer that uses a different fill
color.

Next we create a 2nd rule that does not simply show all objects, but only
those that match a specific filter condition, here “name equals Germany”.
Then we append the 2nd rule to the style, and continue as before.

ImageMagick: world.png

Python Mapnik

Hartmut H

Speaker notes

Now we see, as expected, that the continents are still painted green, and
due to the additional 2nd rule we have highlighted Germany in red.

The border lines of other countries have vanised as we've added
polygons.gamma = 0.0 to the original polygon symbolizers definition.

import mapnik
map = mapnik.Map (600,300)
mapnik.load_map(m, ’world.xml’)

map.zoom_all ()

© ® N o e s w o=

mapnik.render_to_file(map, ’world.png’, ’png’)

Python Mapnik - Fel 2018 30/ 56

Speaker notes

Using python to create symbolizers, rules, styles and layers can become
tedious. Luckily Mapnik provides us with a more compact alternative in
the form of loadable XML stylesheets.

We're now going to create the same map, but with XML. In the program
code we simply replace all the style related code with a simple call to
load-map()

Using XML style files is the usual mode of operation, specifying layers
and styles directly in Python code allows for more dynamic operations
though. Also both approaches can be combined in the same program,
e.g. by loading an XML style first and then extending it dynamically
using Python code.

XML style definition

<?xml version="1.0" encoding="utf-8"?>
<Map background-color=’steelblue’>
<Style name="Borders">
<Rule>
<PolygonSymbolizer fill="green" gamma="0.0"/>
</Rule>
<Rule>
<Filter>([NAME]=’Germany’)</Filter>
<PolygonSymbolizer fill="red"/>
</Rule>
</Style>
<Layer name="world">
<StyleName>Borders</StyleName>
<Datasource>
<Parameter name="file">ne_110m_admin_O_countries.shp</

Parameter>
<Parameter name='"type">shape</Parameter>
</Datasource>
</Layer>
</Map>

Speaker notes

This is the XML stylesheet syntax that is equivalent to our previous
example program. Being XML-based this format is still rather verbose,
but already much more compact than the previous Pyhton-only example.

ImageMagick: world.png

Hartmut H) Python Mapnik

Speaker notes

As expected we don’t see any visual difference to the previous examples
result.

Using Symbolizers

e Using Symbolizers

Python Mapnik

Speaker notes

We're now going to have a closer look at some of the other symbolizers
provided by Mapnik (TODO: work in progress)

For the following examples we're going to use simple GeoJSON files as
data source as this is the most readable of the different supported input
formats.

New Skeleto

1| import mapnik

imap = mapnik.Map (600,300)
:mapnikAload_map(map, ’example.xml’)
:map.zoom_all() # zoom to fit

s|map.zoom(-1.1) # zoom out 10% more

xz mapnik.render_to_file(map, ’world.png’, ’png’)

Python Mapnik

Speaker notes

We start with a slightly modified version of the previous XML example
program.

After zooming the map to just the necessary size needed to include all
data from the data source with zoom_all() we then zoom out by 10%
with zoom(-1.1).

The negative number tells Mapnik that we want to zoom out, not in.
Zooming out a bit is needed as otherwise part of what we paint will be
cut off as zoom_all() does only take data size into account, not
graphics size.

1| <?7xml version="1.0" encoding="utf-8"7>

2| <Map background-color=’white’>

3 <Style name=’point’>

4 <Rule>

5 <PointSymbolizer file=’point.png’/>
6 </Rule>

7 </Style>

o] <Layer name="test">

10 <StyleName>point </StyleName>

1 <Datasource>

1 <Parameter name=’type’>geojson</Parameter >

13 <Parameter name=’file’>exl.geojson</Parameter
>

14 </Datasource>

15| </Layer>

16| </Map>

Speaker notes

The most basic symbolizer we can use to produce graphical map output
is the point symbolizer. This symbolizer will place whatever graphical
symbol we pass to it on every point in the data.

s e o e

"type": "FeatureCollection",
"features": [
{ "type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [12.54, 55.69]
}
},
{ "type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [12.55, 55.68]
}
}
]

FOSDEM - Feb. 4th,

Speaker notes

This is the test data we're going to use with the point symbolizer,
consisting of two points only.

For a full description of PointSymbolizer properties see
https://github.com/mapnik/mapnik/wiki/PointSymbolizer

https://github.com/mapnik/mapnik/wiki/PointSymbolizer

ImageMagick: world.png
L]

FOSDEM - Feb. 4th,

Speaker notes

As somewhat expected: we're only seeing two points here.

Line Symbolizer

"type": "FeatureCollection",
"features": [
{ "type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[10, 101, [20, 201, [30, 40]
1
¥,
"properties": {
"name": "Teststreet"

}

Python Mapnik

Speaker notes

Next we're using a GeoJSON file containing a simple line.

Line Symbolizer

s e o e

<?xml version="1.0" encoding="utf-8"7>
<Map background-color=’white’>
<Style name=’line’>
<Rule>
<LineSymbolizer stroke=’steelblue’ stroke-
width="30">
<TextSymbolizer placement="line" face-name=
"DejaVu Sans Book" size="30"
fill="black" halo-fill
white" halo-radius=
>[name]</TextSymbolizer>
</Rule>
</Style>

<Layer name="test">
<StyleName>line</StyleName>
[...1

FOSDEM - Feb. 4th,

Speaker notes

We're using a combination of a LineSymbolizer and TextSymbolizer here.
The LineSymbolizer will just draw the line in blue at a width of 30 points.
The TextSymbolizer overlays the blue line with black text placed along
the line, and with a small white halo around the letters.

For a full description of the symbolizers properties see
https://github.com/mapnik/mapnik/wiki/LineSymbolizer and
https://github.com/mapnik/mapnik/wiki/TextSymbolizer

https://github.com/mapnik/mapnik/wiki/LineSymbolizer
https://github.com/mapnik/mapnik/wiki/TextSymbolizer

Python Mapnik FOSDEM - Feb. 4th, 2018 40 / 56

Speaker notes

The other symbolizers

Symbolizers not covered by examples yet

o PolygonSymbolizer (seen earlier)

o MarkerSymbolizer - repeated symbol along line

o ShieldSymbolizer - flexible symbol with text along line

o LinePatternSymbolizer - line with attached symbols

o PolygonPatternSymbolizer - fill polygon with repeated
image

o BuildingSymbolizer - draw pseudo-3D buildings

Python Mapnik FOSDEM - Feb. 4th, 2018 41 / 56

Speaker notes

For a list of all supported symbolizers see
https://github.com/mapnik/mapnik/wiki/SymbologySupport#
user-content-symbolizers

https://github.com/mapnik/mapnik/wiki/SymbologySupport#user-content-symbolizers
https://github.com/mapnik/mapnik/wiki/SymbologySupport#user-content-symbolizers

o Drawing on top

Python Mapnik FOSDEM - Feb. 4th, 2018 42 / 56

Speaker notes

Not everything can be handled by Mapnik alone. Adding map
decorations, additional text, and map features for that no suitable
symbolizer exists yet is possible by using Cairo Graphics.

rawing into a Cairo context

import mapnik

import cairo

surface = cairo.PDFSurface(’world.pdf’, 600, 300)
context = cairo.Context(surface)

map = mapnik.Map (600,300)

mapnik.load_map(map, ’world.xml’)

map.zoom_all ()

map.zoom(-1.1)
mapnik.render (map, surface)
context.set_source_rgb(0, 0, 0)
context.set_line_width(5)
context.rectangle (100,100,300,75)

context.stroke ()

surface.finish ()
)

Python Mapnik

Speaker notes

Here we create a PDF Cairo surface, and a Cairo context.

We then create a map as before, but tell Mapnik to render into the given
Cairo surface instead of writing to a file directly.

Then we use the Cairo context to draw a simple rectangle on top of the
rendered map, and finally create the output file by telling the surface to
finish itself.

Result

world (1).pdf
%81% 4| R =

=1
File Edit View Go Bookmarks Help
Q=

1 [ofl ||« =

Speaker notes

The example result in a PDF viewer.

Adding SVG images

s e o e

import mapnik
import cairo
import rsvg

surface = cairo.PDFSurface(’world.pdf’, 600, 300)
context = cairo.Context (surface)

map = mapnik.Map (600,300)
[...]

mapnik.render (map, surface)

svg = rsvg.Handle(’compass.svg’)
context.move_to (10,10)
context.scale (0.5, 0.5)
sngrender_cairo(context)

surface.finish ()

FOSDEM - Feb. 4th,

Speaker notes

With help of the RSVG library we can also easily put SVGs on top of our
maps.

Adding SVG images v3

import mapnik

import cairo

import gi
gi.require_version(’Rsvg’, ’2.0°)
from gi.repository import Rsvg

[...1

rsvg = rsvg.Handle ()

svg = rsvg.new_from_file(’compass.svg’)
context.move_to (10,10)
context.scale (0.5, 0.5)
svg.render_cairo (context)

surface.finish ()

Python Mapnik

Speaker notes

With help of the RSVG library we can also easily put SVGs on top of our
maps.

Result
=" world (2).pdf)
File Edit View Go Bookmarks Help
1 |of1 «(»||la| B 96,81% +| ®| =
°
°

Speaker notes

Adding Text

1l context.select_font_face("Droid Sans Bold", cairo
.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)

context.set_font_size (48)

context.set_source_rgb(1, 1, 1)

s e ow

s|text = ’Some text’

7| x_bearing, y_bearing, width, height = context.
text_extents (text) [:4]

9| context .move_to (100, 100)
1| context.show_text (text)

FOSDEM - Feb. 4th,

Speaker notes

For more sophisticated layout tasks you shoud use Pango for font
handling and text rendering instead.

For this talk we're sticking with basic Cairo functionality.

This also has the advantage of working the same on Python 3 and 4.

Result

Ce ImageMagick: world.png -G
L

£3

ome text

Python Mapnik FOSDEM - Feb. 4th, 2018 49 / 56

Speaker notes

Python Mapnik

Speaker notes

A full featured Example

get-maps.org

" 9@weststrate
QR riedrichstrage

Ot cankennaus
29 zamnarat

Python Mapnik

Speaker notes

This is a real world showing a combination of all the techniques that were
presented here.

The map itself is drawn using the default OpenStreetMap CartoCSS
stylesheet.

The map title, frame, footer text, and side bar index are drawn using
Cairo Graphics.

The red “You are here” circle is drawn using Cairo Graphics, and the
markers on the map corresponding to the side bar index entries are drawn
using CairoGraphics and RSVG.

nother featured Example

maposmatic.osm-baustelle.de

| Test CartoDSM (png}

Python Mapnik

maposmatic.osm-baustelle.de

Chavagne

Python Mapnik

What we learned

o Code wise it is actually rather easy

o The devil is in the styles (and details)

@ Flexible solution to mix map rendering ...
@ ... and custom image decorations

@ Mapnik documentation is suboptimal :(

Python Mapnik FOSDEM - Feb. 4th, 2018 54 / 56

Speaker notes

Questions, Remarks, Wishes?

FOSDEM - Feb. 4th, 2018

Speaker notes

Python Mapnik FOSDEM - Feb. 4th, 2018 56 / 56

Speaker notes

Mapnik Wiki: https://github.com/mapnik/mapnik/wiki
Cairo Graphics: https://cairographics.org/pycairo/
RSVG: https://developer.gnome.org/rsvg/stable/
rsvg-Using-RSVG-with-cairo.html

https://github.com/mapnik/mapnik/wiki
https://cairographics.org/pycairo/
https://developer.gnome.org/rsvg/stable/rsvg-Using-RSVG-with-cairo.html
https://developer.gnome.org/rsvg/stable/rsvg-Using-RSVG-with-cairo.html

	Mapnik Overview
	Prequisites
	Points, Lines and Polygons
	Layers, Styles and Symbolizers
	Code basics
	Using Symbolizers
	Drawing on top
	Summing it up ...

