

GRASS GIS in the sky

GRASS GIS as highperformance remote sensing toolbox

Markus Neteler, Markus Metz, Moritz Lennert

https://grass.osgeo.org/

GRASS GIS Intro

Bringing advanced geospatial technologies to the world

- Geographic Resources Analysis Support System
- Open Source GIS
- developed since 1984, since 1999 GNU GPL
- Portable code (many operating systems, 32/64bit)

GDAL

Your GIS backbone – linkable to:

FOSDEM 2018

GRASS GIS in the sky

2/20

GRASS GIS and Python

#!/usr/bin/env python

Using GRASS GIS from "outside" through "grass-session"

Bringing advanced geospatial technologies to the world

pip install git+https://github.com/zarch/grass-session.git

```
# in future, the stable "grass-session" release
# will be available with:
# pip install grass-session
```

Finally easy use of GRASS GIS as a processing backend in Python!

Combine with GDAL, OTB, ...

```
# filename: test session.pv
from grass session import Session
from grass.script import core as gcore
# create a new location from EPSG code (can also be a GeoTIFF or SHP or ... file)
with Session(gisdb="/tmp", location="location",
             create opts="EPSG:4326"):
  # do something in permanent
  print(gcore.parse command("g.gisenv", flags="s"))
# {u'GISDBASE': u"'/tmp/';",
  u'LOCATION NAME': u"'epsg3035';",
 u'MAPSET': u"'PERMANENT';", }
# create a new mapset in an existing location
with Session(gisdb="/tmp", location="location", mapset="test",
             create opts=""):
   # do something in the test mapset.
   print(gcore.parse command("g.gisenv", flags="s"))
# {u'GISDBASE': u"'/tmp/';",
  u'LOCATION NAME': u"'epsg3035';",
  u'MAPSET': u"'test';",}
```


GRASS GIS 7.4 Release

https://trac.osgeo.org/grass/wiki/Grass7/NewFeatures74

- New: Get demo data at start screen
- GUI: data catalog improved
- Most of ortho-rectification brought back
- r.in.gdal + r.external: provide support for import of raster maps exceeding 90N or 90S or with an EW extent larger than 360 degrees
- r.out.gdal: possibility to create overviews which enhances the compatibility with other GIS software packages
- v.clip added for easy vector clipping
- ... (480 fixes and improvements with respect to 7.2.0)

GRASS GIS 7.4 Release

Clo

Enter p

i.atcorr [imagery, atmospheric correction, radiometric conversion, radiance, reflectance, satellite] 💿 💿				
Performs atmosphered	eric cor	rection using the 6S a	algorithm. 6S - Second Simulation of Satellite Signal in the Solar Spe	ctrum.
Required	9	liss (IRS 1C)	enter month,day,hh.ddd,long.,lat. *	
	10	aster	enter month,day,hh.ddd,long.,lat. *	
	11	avnir	onter month day bh ddd long lat *	Ť

Domuirod	9	liss (IRS 1C)	enter month,day,hh.ddd,long.,lat. *	
Required	10	aster	enter month,day,hh.ddd,long.,lat. *	
Input 11 a		avnir	enter month,day,hh.ddd,long.,lat. *	
mpar	12	ikonos	enter month,day,hh.ddd,long.,lat. *	
Output	13	RapidEye	enter month,day,hh.ddd,long.,lat. *	
	14	VGT1 (SPOT4)	enter month,day,hh.ddd,long.,lat. *	— 🏑 i.m
Optional	15	VGT2 (SPOT5)	enter month,day,hh.ddd,long.,lat. *	📣 Ex
	16	WorldView 2	enter month,day,hh.ddd,long.,lat. *	<u>v</u>
Command output	17	QuickBird	enter month,day,hh.ddd,long.,lat. *	
	18	LandSat 8	enter month,day,hh.ddd,long.,lat. *	
💮 🛛 Manual	19	Geoeye 1	enter month,day,hh.ddd,long.,lat. *	
	20	Spot6	enter month,day,hh.ddd,long.,lat. *	
	21	Spot7	enter month,day,hh.ddd,long.,lat. *	
	22	Pleiades1A	enter month,day,hh.ddd,long.,lat. *	Comr
	23	Pleiades1B	enter month,day,hh.ddd,long.,lat. *	
24 Worldview3		Worldview3	enter month,day,hh.ddd,long.,lat. *	
	25	Sentinel-2A	enter month,day,hh.ddd,long.,lat. *	
	Prev	ious		
		🗙 Close	Run Copy BHelp	
Close dialog on fini	sh			
Enter parameters for 'i	.atcorr			

- Atmospheric correction updated with new • satellites
- MODIS product processing made easy •

xdis.qc [imagery, imagery quality assessment, reflectance, land surface temperature, veget 💠 👝 📼 🗙						
tracts quality co	ntrol parameters from MODIS QC layers.					
Pequired	Name of input surface reflectance QC layer [b	(input=name)				
Required		~				
Optional	Name for output QC type classification layer:*	F	(output=name)			
nand output		~				
	Name of MODIS product type:*		(productname=string)			
Manual	-					
	mod09Q1	1	(qcname=string)			
	mod09A1					
	mod09A1s					
	mod09GA					
	mod09GAs					
	mod09CMG					
	mod09CMGs					
	mod09CMGi					
	modllAl					
	mod11A2		In			
	mod13A2	у 👩 Не	ih			
se dialog on finis	mcd43B2					
arameters for 'i.	mcd43B2q		11.			

FOSDEM 2018

GRASS GIS in the sky

Geo

Remote sensing in GRASS GIS : pixel-based techniques

- Pixel-based tools for satellite and aerial imagery
- Most state-of-the-art methods implemented
 - Complete toolchain from preprocessing to classification
 - Many highly specialized tools

Remote sensing in GRASS GIS : object-based image analysis

source : http://dx.doi.org/10.3390/rs9040358

FOSDEM 2018

- Complete toolchain from segmentation to classification
- Including
 - unsupervised segmentation parameter optimization
 - high performance object statistics calculation
 - module-level parallelization
- Recently created module for SLIC superpixel creation

Remote sensing in GRASS GIS : plus so much more !

- Suite of LiDAR data tools
- Suite for creation of orthophotos
- Current developments :
 - convolutional neural networks
 - cutlines for semantically sensitive tiling
 - etc, etc
 - Constantly growing list of extensions
- Permanent work on performance improvements

Example: NDVI time series

FOSDEM 2018

Bringing advanced geospatial technologies to the world

General HPC layout

Components

- master with job/queue manager
- compute nodes disk space per CPU core RAM per CPU core ideally one SSD per node

Parallelization: several GRASS commands running at the same time

Chunks for parallel processing

Temporal processing

• spatial chunks

need to be mosaiked at the end

or

• temporal chunks

need overlap

Spatial chunks

computational region

- North, South, West, East
- rows, columns

pre-defined regions, one for each chunk (tile)

Alternative

• create X tiles from one raster map (r.tile)

Chunks for parallel processing

Spatial processing

each time step as one chunk

or

spatial chunks

not recommended

 \rightarrow spatial discontinuities

script 1

GRASS commands

script 2

- 1. create unique GISRC, unique mapset
- 2. run script 1
- 3. copy results
- 4. delete GISRC, mapset

script 3

job manager settings run script 2

always check return codes

GRASS installation setup

- environmental variables
- paths

GRASS session setup

- variable GISRC for rc file
 - GRASS database •
 - location •
 - mapset

High-performance computing temporary GRASS GIS session

script 2

Arguments : first and last time step

- 1. **create temporary GISRC, mapset** with unique names, using a pre-defined mapset template
- 2. run script 1 in temporary mapset
- 3. copy results, one for each time step, from temporary mapset to final mapset
- 4. **delete temporary GISRC, mapset** rm -rf \$GISRC /path/to/temp_mapset

GISRC: name of file with GRASS variables GISRC contents:

GISDBASE: name LOCATION_NAME: name MAPSET: name

LOCATION_NAME: sub-directory of GISDBASE MAPSET: sub-directory of LOCATION_NAME

export GISRC=/path/to/tmpgisrc Ideally all on a SSD scratch disk

http://grass.osgeo.org/wiki

job with task(s), here task = script 2

job 1 : running job 2 : running job 3 : running job 4 : running job 5 : waiting job 6 : waiting job 7 : waiting job 8 : waiting

waiting : no hardware resources available

job/queue manager

- Select / create a queue
- submit a job to a queue
- start a job when hardware resources are available
- redirect stdout and stderr to unique files

Collect results

- Copy results to one common GRASS mapset
 - → this is the I/O bottleneck try nice / ionice

cluster file systems

MODIS Land Surface Temperature

temporal + spatial processing

Most important

Have a **good admin** that fixes the system after you broke it

Neteler M, Metz M, 2011 – 2018, pers. com.