
FPGA Manager

State of the Union

Moritz Fischer, National Instruments

$whoami

● Embedded Software Engineer at National Instruments

● Other stuff I do:
○ U-Boot, OE, Linux Kernel…
○ Co-Maintainer of FPGA Manager Framework
○ Random drive-by contributions to other projects

FPGA-Manager - The Problem

● Modern embedded systems often come with

FPGAs of some form

● Accelerator or reconfigurable hardware

● Peripherals that need kernel drivers might

be implemented in FPGA

● Drivers generally don’t like if hardware goes

away without telling them

● The sequence of things going away and

coming back might be tricky

CPU FPGA

SoC FPGA

Overview - Full Reconfiguration

● System consists of HW FPGA manager that

does the actual reconfiguration

● Optional bridges that isolate system during

reconfiguration

● FPGA fabric that is being reconfigured
○ Discoverable
○ Non-discoverable

HW FPGA
MANAGER

Bridges
FPGA
Fabric

Program.
Interface

Processor FPGA

Overview - Partial Reconfiguration
● System consists of HW

FPGA manager that does

the actual reconfiguration

● Optional bridges that

isolate system during

reconfiguration

● FPGA fabric that is being

reconfigured,

subpartitioned into

reconfigurable regions

● Usually:
○ Base bitstream
○ Regions on top

HW FPGA
MANAGER

Bridges

Program.
Interface

Processor FPGA

 Region

 Region

 Region

B

B

B

 Region

 Region

B

 RegionB

B

FPGA-Manager - History

● Vendor solutions with character device, cat
○ Userland control
○ Modules need to be loaded / unloaded manually
○ Potentially dangerous, not pretty, but work

● Basic support for Altera SoCFPGA and Xilinx Zynq merged in Linux 4.4
● Altera Arria 10 and Altera freeze bridge support since Linux 4.10
● TS-7300, Xilinx SPI, Xilinx Logicore PR decoupler, Lattice ice40, Altera PR IP and encrypted

bitstream for Zynq support since Linux 4.12
● Altera passive serial SPI since Linux 4.13
● Mailing list at linux-fpga@vger.kernel.org

Fpga-Manager - Managers

● In charge of one or more regions

● Implements the how to program an FPGA

● Operations
○ write_init(manager, image_info)
○ write(manager, buf, size)
○ write_sg(manager, scatter_table)
○ write_complete(manager)

Fpga-Manager - Bridges

● In charge of isolating regions during

reprogramming

● Implements the how to isolate a region

● Operations
○ enable_show(bridge)
○ enable_set(bridge, on)

FPGA-Manager - Regions

● Models a part of an FPGA that is

reprogrammable

● Has a reference to a FPGA manager

● Has a list of bridges

● Currently only modifiable/usable via

overlays, being refactored to include non-dt

use case

FPGA-Manager - How does it fit together

● Region holds references

to bridges and a

manager

● Higher level code

targets reprogramming

a Region

● Think in terms of

Regions instead of

Managers and Bridges

● What vs. How
FPGA

Manager
FPGA Bridge

A

Region A Region B Region C

FPGA Bridge
B

FPGA Bridge
C

Device

FPGA Manager - DT based regions

● Define regions in device tree

● Region got reference to

manager

● Use overlay to modify

properties
○ firmware-name
○ partial-fpga-config
○ encrypted-fpga-config

● Caveat: No userland interface

for overlays in mainline

fpga_mgr: fpga-mgr@ff706000 {

compatible = "altr,socfpga-fpga-mgr";

interrupts = <0 175 4>;

};

fpga_region0: fpga-region0 {

compatible = "fpga-region";

fpga-mgr = <&fpga_mgr>;

firmware-name = “foo.rbf”;

gpio@10040 {

compatible = "altr,pio-1.0";

reg = <0x10040 0x20>;

altr,gpio-bank-width = <4>;

};

};

FPGA-Manager- Regions (revamped)

● Currently, separating out device-tree code into of_region

● New interface
○ fpga_region_register(struct device *dev, struct fpga_region *region)
○ fpga_region_unregister(struct fpga_region *region)
○ int fpga_region_program_fpga(struct fpga_region *region,

 struct fpga_image_info *image_info);

● Allows you to ‘bring your own region’ e.g. as part of a device, as part of your image info, ‘bring your

own buffer’

FPGA Manager - Intel DFL based PCIe
(upcoming)

● Device Feature List

● PCIe base device binds driver
○ Creates bridges by parsing DFL
○ Create regions by parsing DFL
○ Create manager by parsing DFL

● ioctl() allows for partial reconfiguration of

particular regions

● Working towards generalization

Region A Region B

Device

Bridge A
Bridge B

FME
Manager

DFL
BASE IMAGE

describes

PCIe

FPGA Manager - USB/SPI based?

● DT doesn’t work for all cases

● Can’t rely on device peripherals being self

describing

● How to deal with non-discoverable

device?
○ Binary header attached to bitstream?
○ DFL?
○ FDT based?

FPGA Device

USB / SPI?

FPGA-Manager - the good

● Representing systems with device tree overlays and regions works pretty

well

● Hardware support is growing

FPGA-Manager - the bad

● Currently doesn’t work well for non-dt platforms

FPGA-Manager - the ugly

● Making it work even on DT platforms relies

on out of tree code
○ DT overlays
○ Sysfs / ioctl

● No userland API

● Some use cases flat out not supported at the

moment
○ Discoverable bus in FPGA, e.g.

Not all is doom and
gloom, here’s my cat
watching TV ...

Questions?

email:

moritz.fischer@ettus.com / mdf@kernel.org

gpg-fingerprint:

135A 2159 8651 9D68 DA5B C3F1 958A 4C04 7304 62CC

github:

mfischer

