How Deep Learning, could help to improve GeoSpatial data quality? an OSM use case

@o_courtin

2007-12

2010-07

2016-11

Fig 6. Completeness of the OSM dataset, by grid cell, January 2016. The fraction complete is estimated by the multilevel model. The color intensity represents the number of estimated street edges, thus highlighting parts of the world with a denser street network. The full-resolution image is available online.

http://wellbeing.ihsp.mcgill.ca/publications/Barrington-Leigh-Millard-Ball-PLOS2017.pdf

Error detection tools

Error Detecting Tools check the OSM data for potential data errors, inaccuracy or sparsely mapped places. Users should check if these structures are really wrong (false positives usually occur and there are not really mapping rules which are set in stone) and correct the data for a continuously rising data quality.

Comparison of some of the following tools

· · · · · · · · · · · · · · · · · · ·							
Tool \$	Coverage \$	Error types \$	Display mode \$	Fix suggestion \$	Downloadable \$	API ÷	Correction \$
Keep Right	World	Many (50+)	Marker map	no	yes	yes	German only
Osmose	World	Many (200+)	Marker map	yes	yes	yes	yes
JOSM/Validator	Local	Many	List	yes	N/A	N/A	For some problems
OSM Inspector	World/Partial	Many	Rendered map	no	yes	N/A	no
Maproulette	World/Partial	Many (10+)	One feature at time	no	yes	yes	no

What about using an other dataset, to hilight (in)consistencies?

Light pollution map

Open Data from: http://geodata.grid.unep.ch - 2003 Raster

SELECT corr (pop_density, light)::numeric(4,4) FROM own.commune;

0.6533

-- OSM 08/2014

SELECT corr (road_density, light)::numeric(4,4) FROM own.commune;

0.7573

-- OSM 08/2016

SELECT corr (road_density, light)::numeric(4,4) FROM own.commune;

0.7782

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

SOFTWARE DEVELOPMENT

Deep Learning for Semantic Segmentation of Aerial Imagery

By Rob Emanuele on May 30th, 2017

https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-imagery/

Pre-trained ResNet50 with ImageNet on IR-R-G

	Overall	Impervious	Building	Low Vegetation	Tree	Car	Clutter
Validation	85.8	89.1	91.8	82.0	83.3	93.7	63.2
Test	89.2	91.4	96.1	86.1	86.6	93.3	46.8

```
# The number of output labels
 1.
     nb labels = 6
 2.
3.
     # The dimensions of the input images
 4.
     nb rows = 256
 5.
     nb cols = 256
 6.
7.
     # A ResNet model with weights from training on ImageNet. This will
 8.
     # be adapted via graph surgery into an FCN.
9.
     base model = ResNet50(
10.
         include top=False, weights='imagenet', input tensor=input tensor)
11.
12.
     # Get final 32x32, 16x16, and 8x8 layers in the original
13.
     # ResNet by that layers's name.
14.
     x32 = base model.get layer('final 32').output
15.
     x16 = base model.get layer('final 16').output
16.
     x8 = base model.get layer('final x8').output
17.
18.
     # Compress each skip connection so it has nb labels channels.
19.
     c32 = Convolution2D(nb labels, (1, 1))(x32)
20.
     c16 = Convolution2D(nb labels, (1, 1))(x16)
21.
     c8 = Convolution2D(nb labels, (1, 1))(x8)
22.
23.
```

```
23.
     # Resize each compressed skip connection using bilinear interpolation.
24.
     # This operation isn't built into Keras, so we use a LambdaLayer
25.
     # which allows calling a Tensorflow operation.
26.
     def resize bilinear(images):
27.
         return tf.image.resize bilinear(images, [nb rows, nb cols])
28.
29.
     r32 = Lambda(resize bilinear)(c32)
30.
     r16 = Lambda(resize bilinear)(c16)
31.
     r8 = Lambda(resize bilinear)(c8)
32.
33.
     # Merge the three layers together using summation.
34.
     m = Add()([r32, r16, r8])
35.
36.
     # Add softmax layer to get probabilities as output. We need to reshape
37.
     # and then un-reshape because Keras expects input to softmax to
38.
     # be 2D.
39.
     x = Reshape((nb rows * nb cols, nb labels))(m)
40.
     x = Activation('softmax')(x)
41.
     x = Reshape((nb rows, nb cols, nb labels))(x)
42.
43.
     fcn model = Model(input=input tensor, output=x)
44.
```

Discussion

Dstl Satellite Imagery Feature Detection

Can you train an eye in the sky?

a

\$100,000 · 419 teams · 8 months ago

Overview

Data

Kernels

Discussion Leaderboard

Rules

Overview

Description

Evaluation

Prizes

Data Processing Tutorial

Timeline

The proliferation of satellite imagery has given us a radically improved understanding of our planet. It has enabled us to better achieve everything from mobilizing resources during disasters to monitoring effects of global warming. What is often taken for granted is that advancements such as these have relied on labeling features of significance like building footprints and roadways fully by hand or through imperfect semi-automated methods.

As these large, complex datasets continue to increase exponentially in number, the Defence Science and Technology Laboratory (Dstl) is seeking novel solutions to alleviate the burden on their image analysts. In this competition, Kagglers are challenged to accurately classify features in overhead imagery. Automating feature labeling will not only help Dstl make smart decisions more quickly around the defense and security of the UK, but also bring innovation to computer vision methodologies applied to satellite imagery.

Final results

Below we present a small sample of the final results from our models:

Buildings

Туре	Wavebands	Pixel resolution	#channels	Size
grayscale	Panchromatic	0.31 m	1	3348 x 3392
3-band	RGB	0.31 m	3	3348 x 3392
16-band	Multispectral	1.24 m	8	837 x 848
	Short-wave infrared	7.5 m	8	134 x 136

https://blog.deepsense.ai/deep-learning-for-satellite-imagery-via-image-segmentation/

U-Net: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/abs/1505.04597

Figure 1: Deep learning architectures for joint processing of optical and OpenStreetMap data.

Nicolas Audebert, Bertrand Le Saux, Sébastien Lefèvre. Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better Semantic Maps. EARTHVISION 2017 IEEE/ISPRS CVPR Workshop. Large Scale Computer Vision for Remote Sensing Imagery, Jul 2017, Honolulu, United States. 2017.

https://hal.archives-ouvertes.fr/hal-01523573

Figure 4: Excerpt from the classification results on Potsdam

Easy parts of applying machine learning:

.fit() .predict() Hard parts:

- .clean()
- .transform()
- .get_data()
- .frame_problem()
- .debug()
- .handle_nonstationarities()
- .handle_missing_inputs()

35

1 792

2.0K

https://developmentseed.org/blog/2018/01/11/label-maker/

Purple building tile labels overlaid over Mapbox Satellite Imagery.

https://developmentseed.org/blog/2018/01/19/sagemaker-label-maker-case/


```
class SimpleIter(mx.io.DataIter):
    def init (self, data names, data shapes, data gen,
                 label names, label shapes, label gen, num batches=10):
        self. provide data = zip(data names, data shapes)
        self. provide label = zip(label names, label shapes)
        self.num batches = num batches
       self.data gen = data gen
       self.label gen = label gen
       self.cur batch = 0
    def iter (self):
        return self
    def reset(self):
        self.cur batch = 0
    def next (self):
       return self.next()
    @property
    def provide data(self):
        return self. provide data
    @property
    def provide label(self):
        return self. provide label
    def next(self):
        if self.cur batch < self.num batches:</pre>
           self.cur batch += 1
           data = [mx.nd.array(q(d[1])) for d,q in zip(self. provide data, self.data gen)]
            label = [mx.nd.array(q(d[1])) for d,q in zip(self. provide label, self.label qen)]
            return mx.io.DataBatch(data, label)
```

https://mxnet.incubator.apache.org/tutorials/basic/data.html

else:

raise StopIteration

```
WITH
origins AS (SELECT ('{{855878,6534055},{878721,6533022},{873294,6541341},{870027,6524893}}'::float[]) AS ul ),
tiles AS (
     SELECT row_number() OVER() as tid,
            ST SetSRID(
                ST_MakeEnvelope(ul[i][1], ul[i][2], ul[i][1] + 1250, ul[i][2] + 1250)
                , 2154
            ) AS geom
     FROM origins, generate_subscripts((SELECT ul FROM origins), 1) AS i
tile rast AS
    SELECT tiles.tid,
            ST_AddBand(
                ST_SetSRID(
                    ST_MakeEmptyRaster(
                        250, 250,
                        ST_Xmin(tiles.geom)::float8,
                        ST_Ymax(tiles.geom)::float8,
                    2.5),
                2154),
            '8BUI') AS rast
    FROM tiles
images AS
    SELECT tile_rast.tid,
            tile_rast.rast AS tile_rast,
            ST_MapAlgebra(
                ST_AddBand(tile_rast.rast, '8BUI'::text), 1,
                ST_Resample(ST_Grayscale(ST_Union(image.rast)), tile_rast.rast, 'bilinear'), 1,
                '[rast2] ', NULL, 'FIRST', '[rast2]'
            ) AS rast
    FROM tile_rast, LATERAL
        SELECT rast
        FROM sat.s2
        WHERE ST_Intersects(s2.rast, tile_rast.rast)
   ) AS image
   GROUP BY tile_rast.rast, tile_rast.tid
labels AS (
   SELECT tile_rast.tid,
            ST_MapAlgebra(
                 tile rast.rast,
                 ST AsRaster(label.geom, tile rast.rast, '8BUI'),
                 '([rast2])::integer', NULL, 'FIRST', '([rast2])::integer'
             ) AS rast
    FROM tile_rast, LATERAL
       SELECT ST_ClipByBox2D(ST_Buffer(ST_Union(osm.way), 10),
                             ST_Envelope(tile_rast.rast)) geom
       FROM planet_osm_line osm
       WHERE osm.highway IS NOT NULL AND (osm.route = 'road' OR osm.route IS NULL)
       AND ST_Intersects(osm.way, tile_rast.rast)
       GROUP BY tile_rast.rast, tile_rast.tid
    ) AS label
SELECT Box3D(images.rast) AS bbox,
       ST_AsBinary(images.rast) AS data,
       CASE WHEN labels.rast IS NULL
           THEN ST AsBinary(images.tile rast)
           ELSE ST_AsBinary(labels.rast)
       END AS label
FROM labels RIGHT JOIN images ON images.tid = labels.tid
```

```
batch size = 2
max iter = 2
geo iter = GeoIter(
    'postgresql://o:xxx@127.0.0.1:5433/osm qa',
    (850000.6524040.890960.6565000), 2154, (256, 256), (10, 2.5),
    11 11 11
         SELECT ST ClipByBox2D(ST Buffer(ST Union(osm.way), 6),
                                 ST Envelope(tile_rast.rast)) geom
         FROM planet osm line osm
         WHERE osm.highway IS NOT NULL AND (osm.route = 'road' OR osm.route IS
NULL)
         AND ST Intersects(osm.way, tile rast.rast)
    11 11 11
    11 11 11
        SELECT ST Grayscale(ST Union(s2.rast)) AS rast
        FROM sat.s2
        WHERE ST Intersects(s2.rast, tile rast.rast)
    11 11 11
    batch size, max iter)
```


MxNet multi GPU (easy) handling

And if (really) needed, multi machines training

https://mxnet.incubator.apache.org/how_to/multi_devices.html

MxNet RecordIO fast data loader

Data Format

Since the training of deep neural network often involves large amounts of data, the format we choose should be both efficient and convenient. To achieve our goals, we need to pack binary data into a splittable format. In MXNet, we rely on the binary recordIO format implemented in dmlc-core.

Binary Record

https://mxnet.incubator.apache.org/architecture/note_data_loading.html

Could we MapReduce a map?

Structuration by OpenDataSet

#1 – DIY stage

#2 – Good Training DataSet publicly available

#3 – Efficient PreTrained model publicly available

#4 – Out of the box app

Labelled Datasets

Volodymyr PhD: https://www.cs.toronto.edu/%7Evmnih/data/

SpaceNet: https://aws.amazon.com/public-datasets/spacenet/

ISPRS: http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html

EuroSAT: https://arxiv.org/pdf/1709.00029.pdf

DeepSAT: http://csc.lsu.edu/%7Esaikat/deepsat/

Next Steps

Lower resolution imagery ability (as Sentinel-2 or PlanetLab)

RL

Human Learning

https://www.college-de-france.fr/site/yann-lecun/course-2015-2016.htm

http://cs231n.stanford.edu/syllabus.html

https://raw.githubusercontent.com/mrgloom/Semantic-Segmentation-Evaluation/master/README.md

http://crowdsourcing.topcoder.com/spacenet

https://www.crowdai.org/challenges/mapping-challenge

Conclusions

@data_pink

www.datapink.com