
Data integrity protectionData integrity protection
with cryptsetup toolswith cryptsetup tools

What is the Linux dm-integrity module andWhat is the Linux dm-integrity module and
why we extended dm-crypt to use authenticated encryption.why we extended dm-crypt to use authenticated encryption.

 Milan Brož Milan Brož
 gmazyland@gmail.comgmazyland@gmail.com

FOSDEM, BrusselsFOSDEM, Brussels
 February 4, 2018February 4, 2018

Centre for Research on
Cryptography and Security

research.redhat.com crocs.fi.muni.cz

Agenda
● Data integrity protection and disk encryption?

● dm-integrity and dm-crypt Linux kernel modules

● dm-integrity standalone mode

● dm-crypt authenticated encryption

● LUKS2

Full Disk Encryption (FDE)
● Disk sector level

● Sectors accessed independently

● 4k sector size today

● Data-at-rest protection

● Confidentiality

● Length-preserving encryption

● plaintext size = ciphertext size

● No data integrity protection

FDE images with Tux

... not only kind of glitch-art :-)

● Visualization of real on-disk encrypted data

● Generated with dm-crypt & cryptsetup

● BMP image (no check-sums)

FDE encryption example
AES-XTS, IV is sector offset

 plaintext ciphertext

Wrongly used modes, IVs, nonces
ciphertext patterns

 ECB mode XTS, constant IV

Length-preserving encryption
no integrity, garbage-in, garbage-out

 mangled ciphertext decrypted plaintext

FDE threat model?
● Stolen device, disk in repair, ...

● Length-preserving, confidentiality only

● Data never used again

● Our model: Returned device

● Silent data corruption

● Implanted data without owner knowledge

● Could this happen?

● Lost disk returns to owner

● Devices traveling separately...

Another FDE trade-offs
● Whole sector not pseudo-randomly changed

on every write.

● Granularity of ciphertext change

● Same plaintext = same ciphertext
(in the same sector)

● Could we have randomized IVs?

● Replay attacks

● Revert to old valid content

● Need trusted store for root hash (Merkle tree)

Encryption block granularity
(each following block is inverted here)

 AES block, 16B 4k disk sector

XTS Encryption block trade-off
Every 64 byte re-written, ciphertext diff.

The same
byte was
written :-)

 AES-XTS, IV is sec# AES-XTS, IV random

What is missing?
● Confidentiality + data integrity protection

=> authenticated encryption (AEAD)

● Ciphertext change granularity

=> randomized IV (or wide encryption modes)

● Pseudo-random change on every write

=> randomized IV

● Additional metadata per-sector

FDE with data integrity protection
● FreeBSD GELI – different approach

● Our requirements

● No special HW

● Commercial of-the-shelf SSDs

● Configurable per-sector metadata

● Use native sector size

● Reliable recovery on power fail

● Algorithm agnostic

● Free code & algorithms, no patents

Separation of storage and crypto
● dm-integrity

● Emulates per-sector metadata

● Optionally standalone mode (CRC32)

● dm-crypt

● Authenticated encryption

● Randomized IV

● Tags and IVs stored in per-sector metadata

● cryptsetup

● LUKS2 on-disk format

● User friendly activation

dm-integrity on-disk layout

● Superblock (SB) – persistent parameters

● Journal area

● Can be deactivated (write performance penalty)

● Metadata per 4k sector (packed)

● 32bits metadata (CRC32) – 0.1% of storage

● 256bits metadata (SHA256) – 0.78% of storage

dm-integrity standalone mode
● Non-cryptographic data check-sums

● Detects silent data corruption

● CRC32 or hash

● Per-sector check-sum

● Reads (validate) / Writes (update)

● No encryption of data

● Integritysetup tool

Integritysetup example
integritysetup format /dev/sdb [-I crc32c]
 Formatted with tag size 4, internal integrity crc32c.
 Wiping device to initialize integrity checksum.

integritysetup open /dev/sdb test [-I crc32c]

integritysetup status test
 type: INTEGRITY
 tag size: 4
 integrity: crc32c
 device: /dev/sdb
 sector size: 512 bytes
 interleave sectors: 32768
 size: 2064392 sectors
 mode: read/write
 journal size: 8380416 bytes
 journal watermark: 50%
 journal commit time: 10000 ms

mkfs -t xfs /dev/mapper/test
....

dm-crypt authenticated encryption
● Authenticated request

● Position must be authenticated

● Misplaced sector

● Random IV (nonce)

● On every write from RNG

● Collision probability negligible (!)

● No protection to replay attacks

Authenticated algorithms
● No perfect algorithm in kernel for FDE!

● Length-preserving modes + HMAC (too slow)

● Authenticated modes

● AES-GCM (96-bit nonce – collision is fatal)

● ChaCha20-Poly1305 (RFC7539, 96-bit nonce)

● Future: CAESAR (crypto competition finalists)

● AEGIS performs well

● Reason it remains experimental feature.

LUKS2 with integrity protection
cryptsetup luksFormat --type luks2 /dev/sdb $PARAMS
$PARAMS AES-XTS+HMAC: --cipher aes-xts-plain64 --integrity hmac-sha256
$PARAMS ChaCha20-poly1305: --cipher chacha20-random --integrity poly1305

cryptsetup open /dev/sdb test
lsblk /dev/sdb
 NAME MAJ:MIN SIZE
 sdb 8:16 1G
 └─test_dif 253:0 952M
 └─test 253:1 952M

cryptsetup status test
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 integrity: hmac(sha256)
 integrity keysize: 256 bits
 device: /dev/sdb
 sector size: 512
 size: 1949704 sectors
 mode: read/write

cryptsetup close test

 NAME MAJ:MIN SIZE
 sdb 8:16 1G
 └─test_dif 253:0 959.5M
 └─test 253:1 959.5M

 type: LUKS2
 cipher: chacha20-random
 keysize: 256 bits
 key location: keyring
 integrity: poly1305

 device: /dev/sdb
 sector size: 512
 size: 1965064 sectors
 mode: read/write

Performance (example: fio simulated)
● SSD, 30% writes / 70% reads (very inefficient case)

Summary
● Try it

● cryptsetup 2.0.x, Linux kernel 4.12+

● We need new AEAD algorithms

● Integrity protection on higher layer better?

● dm-integrity in future?

● Replaced by persistent memory

● Variable sector with inline metadata.

LUKS2 (in cryptsetup2)
● LUKS is a key management

● LUKS2 is on-disk format for LUKS extensions

● Metadata replicated (not keyslots)

● JSON metadata

● Argon2 key derivation function

● Kernel keyring

● Cryptsetup does not handle HW tokens directly.

 => token concept (metadata + external program)

● LUKS1 supported forever :-)

LUKS2 & tokens
● Token – metadata object in header

=> How to get a passphrase for a keyslot.

1) Keyring token (internal)

● External app for HW (TPM, Smartcard, ...)

● Passphrase in kernel keyring

● Cryptsetup activation is automatic

2) External token types

● LUKS2 stores metadata

● External app uses libcryptsetup to activation

● Tokens ignored by cryptsetup

Thanks for your attention.

Q & A ?

or use dm-crypt mailing list later

Centre for Research on
Cryptography and Security

research.redhat.com crocs.fi.muni.cz

 Milan Brož Milan Brož
 gmazyland@gmail.comgmazyland@gmail.com

FOSDEM, BrusselsFOSDEM, Brussels
 February 4, 2018February 4, 2018

