
How to cross compile with
LLVM based tools

Peter Smith, Linaro

Introduction and assumptions
● What we are covering Today

○ What is cross compilation?
○ How does cross compilation work with Clang and LLVM?
○ The extra bits you need to build a Toolchain.
○ Building applications and running them on qemu.

● About me
○ Working in the Linaro TCWG team on LLVM.
○ Wrote the LLVM doc “How to cross compile Builtins on Arm”

■ After I found it significantly harder than I had expected.

Definitions
● Host

○ The system that we run the development tool on.

● Target
○ The system that we run the generated program on.

● Native compilation
○ Host is the same as Target.

● Cross compilation
○ Host is different to Target.

Motivation for cross compilation
● Can be a significant productivity boost

○ Host is faster than target.
● The only option available

○ Target can’t run C/C++ compiler.
● Building an application for many platforms

on the same machine.
● Bootstrapping a compiler on a new

architecture.

A cross compiled application

Target
shared
libraries

Target
shared
libraries

Target static
libraries

Target
header files

Generic
source

Target
source

Cross
compiler

Target
objects

Cross linker

Application
shared
libraries

ApplicationHOST Target

Application
shared
libraries

Application

● Cross
compilation
requires a
toolchain and
target libraries.

Complications
● Building an application requires more than just a compiler and linker

○ Header files for the target.
○ Target specific source code needs to be compiled for the right target.
○ Static and shared library dependencies for the target.

● Build system on the host needs to be configured.
● Shared library dependencies on target must be compatible with host.

Cross compilation and the LLVM toolchain
● Clang and other LLVM tools can work with multiple targets from same binary.
● Clang and LLD drivers can emulate drivers of other toolchains.
● Target controlled by the target triple.
● LLVM project does not have implementations of all the parts of toolchain.
● LLVM project includes some but not all of the library dependencies.

Toolchain components
Component LLVM GNU

C/C++ Compiler clang gcc

Assembler clang integrated assembler as

Linker ld.lld ld.bfd ld.gold

Runtime compiler-rt libgcc

Unwinder libunwind libgcc_s

C++ library libc++abi, libc++ libsupc++ libstdc++

Utils such as archiver llvm-ar, llvm-objdump etc. ar, objdump etc.

C library libc

Toolchain component choices
● Clang defaults chosen at build time, usually favour GNU libraries.
● Compiler runtime library

○ --rtlib=compiler-rt, --rtlib=libgcc.
○ Compiler-rt needed for sanitizers but these are separate from builtins provided by libgcc.

● C++ library
○ --stdlib=libc++, --stdlib=libstdc++.
○ No run-time option to choose C++ ABI library, determined at C++ library build time.

● Linker
○ -fuse-ld=lld, -fuse-ld=bfd, -fuse-ld=gold.
○ Driver calls ld.lld, ld.bfd, ld.gold respectively.

● C-library choice can affect target triple
○ For example arm-linux-gnueabi, arm-linux-musleabi.

Target Triple
● General format of <Arch><Sub-arch>-<Vendor>-<OS>-<Environment>

○ Arch is the architecture that you want to compile code for
■ Examples include arm, aarch64, x86_64, mips.

○ Sub-arch is a refinement specific to an architecture
■ Examples include armv7a armv7m.

○ Vendor captures differences between toolchain vendors
■ Examples include Apple, PC, IBM.

○ OS is the target operating system
■ Examples include Darwin, Linux, OpenBSD.

○ Environment includes the ABI and object file format
■ Examples include android, elf, gnu, gnueabihf.

● Missing parts replaced with defaults.

Clang Driver

clang

cc1 cc1as lld

clang --target=aarch64-linux-gnu func1.s hello.c -o hello

clang-7.0 -cc1as -triple
aarch64-linux-gnu
-target-cpu=generic
-target-feature +neon
...

clang-7.0 -cc1 -triple
aarch64-linux-gnu
-target-cpu=generic
-target-feature +neon
-target-abi aapcs
-Isystem /path/to/includes
...

Ld.lld -m aarch64linux
-dynamiclinker
/lib/ld-linux-aarch64.so
-L /path/to/system/libraries
-lc
...

Architecture: aarch64
Sub-architecture: not applicable
Vendor unknown
OS: linux
Environment: GNU

Clang driver and toolchains
● Driver mode

○ gcc, g++, cpp (preprocessor), cl (MSVC).
○ Set with option or inferred from filename clang, clang++, clang-cl.

● Target triple used to instantiate a ToolChain derived class
○ arm-linux-gnueabihf instantiates the Linux ToolChain.
○ arm-none-eabi instantiates the bare metal driver.

● Toolchain class has knowledge of how to emulate the native toolchain
○ Include file locations.
○ Library locations.
○ Constructing linker and non integrated assembler options.
○ Includes cross-compilation emulation.

● Not all functionality is, or could realistically be, documented.

Building a simple AArch64 Linux OS
● Choose to use compiler-rt, with undefined behaviour sanitizer with LLD as

linker.
● Shopping list

○ AArch64 C library includes and library dependencies.
○ Clang, LLD.
○ AArch64 Compiler-rt sanitizer library.
○ qemu-aarch64 user mode emulator to test our application.

Obtaining toolchain components
● x86_64 host builds of clang and lld

○ Built from source on the host system.
○ The x86_64 stable release.

● Compiler-rt AArch64 libraries
○ Built from source (cross compiled) on the host system.
○ The aarch64 stable release

■ Prebuilt shared libraries have dependencies on libstdc++.

● C library and other library dependencies
○ Install AArch64 multiarch support.
○ Use a Linaro Binary Toolchain release.

■ Compilers, binutils, glibc...

Using a Linaro gcc toolchain from a directory
● Download and install the gcc toolchain for your target

○ https://releases.linaro.org/components/toolchain/binaries/
○ Should closely match your target triple. We will use is aarch64-linux-gnu.
○ Unpacks to a dir we’ll call installdir containing:

■ aarch64-linux-gnu, bin, include, lib, libexec, share

● Clang needs to be given the toolchain location and the sysroot location
○ --gcc-toolchain=/path/to/installdir

■ Clang is looking for lib/gcc/<target-triple> subdir.
○ --sysroot=/path/to/installdir/<target-triple>/libc

● Warning other gcc toolchains may have small differences in directory layout.
● Warning without --gcc-toolchain clang will use heuristics to find tools

○ Will often find the host ld in /usr/bin/ld as the linker.

https://releases.linaro.org/components/toolchain/binaries/

Location of runtime libraries
● Clang looks for a “resource directory” in a location relative to the binary for:

○ Compiler specific includes such as stddef.h
○ Target specific includes such as arm_acle.h and arm_neon.h
○ sanitizer includes in a subdirectory.
○ Runtime libraries such as compiler-rt.

● Print out location with --print-resource-dir
○ ../lib/clang/<release>/

● AArch64 compiler-rt sanitizer libraries need to be in the lib/linux
subdirectory of the resource directory.

○ If you have downloaded the LLVM release the x86 package will only contain x86 runtime
libraries.

○ If you build compiler-rt yourself, you’ll need to install to the resource directory.

Building and running the application

#include <iostream>
#include <string>

int func(void) {
 throw std::string("Hello World\n");
 return 0;
}

int main(int argc, char** argv) {
 try {
 func();
 } catch (std::string& str) {
 std::cout << str;
 }
 int k = 0x7fffffff;
 k += argc; //signed integer overflow
 return 0;
}

● Test is a slightly modified
version of the ubsan
example

○ Modified to throw an exception.
● We want to use as much of

the LLVM libraries as
possible

○ compiler-rt
○ libc++, libc++abi,

libunwind

Building and running the application

prompt$ root=/path/to/clang/install_dir
prompt$ sysroot=/path/to/linarogcc/aarch64-linux-gnu/libc
prompt$ ${root}/bin/clang++ --target=aarch64-linux-gnu -fsanitize=undefined \
 --rtlib=compiler-rt --stdlib=libc++ \
 -nostdinc++ -I${root}/include/c++/v1 \
 -Wl,-L${root}/lib \
 --sysroot ${sysroot} \
 --gcc-toolchain=/path/to/linarogcc \
 -rpath ${root}/lib \
 example.cpp -o example

prompt$ qemu-aarch64 -L ${sysroot} example
Hello World
example.cpp:16:7: runtime error: signed integer overflow: 2147483647 + 1 cannot be
represented in type 'int'

Cross compiling the LLVM libraries yourself
● The home pages for the libraries have build instructions for standalone builds.
● Extra cmake options are required for cross-compilation.
● Build defaults to GNU library dependencies.
● Guide to cross compiling compiler-rt for arm available in LLVM docs.
● Similar principles can be used for libc++, libc++abi and libunwind.
● Need to be careful with the order that you build the libraries in.

○ Compiler-rt builtins do not depend on anything.
○ Libunwind needs c++ includes but not binary libraries.
○ Libc++abi needs c++ includes but not binary libraries and an unwinder such as libunwind.
○ Libc++ needs an abi library such as libc++abi.
○ Compiler-rt non builtin libraries need a c++ library.

Cross compilation hints and tips
● Name of clang binary is significant

○ <target-triple>-clang -> clang --target=<target-triple>
○ <config-filename>-clang -> clang --config <config-filename>
○ clang<driver-mode> -> clang --driver-mode=<driver-mode>

■ Most important is using clang++ for C++ files.

● The clang -v option will show the gcc toolchain selected.
● The --gcc-toolchain <path> option can be pointed at a gcc cross

toolchain
○ For example the Linaro Binary Toolchain releases.

● The --sysroot option can be used as root path for includes and libraries.
● Clang can use cross compilation support from multi-arch Linux distributions

○ A chroot or container is useful to maintain consistency of builds.

Cross compilation hints and tips
● When using shared libraries make sure the host and target have the same

libraries
○ Be careful that any rpath option applies on the target system.

● For cmake cross compilation
○ The trycompile step may not pick options that set the target, sysroot and gcc-toolchain

■ Can pass these in with -DCFLAGS and -DCXXFLAGS
○ For compiling bare-metal static libraries the option

-DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY will skip the link step.
○ Use standalone builds with separate cmake invocations when cross-building the llvm libraries.

● You can use clang option --print-search-dirs to see effect of options
○ For example --target, --sysroot, --gcc-toolchain

Conclusions
● Clang can work well as a cross-compiler for a Linux environment if you have a

cross compiling gcc installation available.
● Path of least resistance is to use the same default libraries as your target

system.
● Clang bare-metal driver requires a lot of manual configuration.

Resources
● For general information: https://clang.llvm.org/docs/CrossCompilation.html
● How to cross compile clang itself: https://llvm.org/docs/HowToCrossCompileLLVM.html
● My own experience in cross-compiling compiler-rt for Arm

https://llvm.org/docs/HowToCrossCompileBuiltinsOnArm.html
● How to assemble a toolchain using llvm components http://clang.llvm.org/docs/Toolchain.html

https://clang.llvm.org/docs/CrossCompilation.html
https://llvm.org/docs/HowToCrossCompileLLVM.html
https://llvm.org/docs/HowToCrossCompileBuiltinsOnArm.html
http://clang.llvm.org/docs/Toolchain.html

The End
Thanks for listening and good luck!

Backup

Building a bare-metal Arm application
● Target a Cortex-M3 with no RTOS, with newlib, compiler-rt, LLD linker.

○ --target=arm-none-eabi.
○ Use the GNU Arm Embedded Toolchain.
○ Clang will use the BareMetal Toolchain driver.
○ A linker script is needed to separate the Flash and Ram.

● Adapt the semihosting sample program from the GNU toolchain.
● Test with qemu-system-arm with -machine lms3811evb using semihosting

○ System mode emulates a development board and not just a CPU.

Complications
● No prebuilt binary for compiler-rt builtins on Cortex-M3

○ The compiler-rt builtins sources for armv7m include assembler files with floating point.

● The GNU ARM embedded toolchain sample uses specs files for configuration
○ Clang doesn’t support specs files.

● The clang BareMetal driver doesn’t support multilib
○ We will have to select the library that we need.

● LLD doesn’t support the section type COPY in linker scripts
○ Have to place the heap and stack using a different method.

● LLD always adds .a suffix for -L<library> even if <library> already has one
● Clang integrated assembler, LLD don’t handle the startup_CM3.S

○ Contains a .section with code but no “ax” flags.

Building an application for a Bare Metal device
● Building newlib with clang

○ Possible but there may be some source changes. For example on Arm
■ __attribute__((naked)) on clang only allows assembler.
■ Integrated assembler does not support some of the syntax used.

● Building libc++, libc++abi and libunwind with newlib
○ Newlib 2.4 has some incompatibilities with libc++ locale
○ Depending on configuration Newlib may not define clock_gettime, needed by chrono
○ Some extra defines may be necessary:

■ __GNU_VISIBLE, _GNU_SOURCE, LIBCPP_HAS_NO_ALIGNED_ALLOCATION
○ Consider disabling threads and monotonic clock
○ Cmake option -DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY skips trycompile

link step.

