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Introduction and assumptions
● What we are covering Today

○ What is cross compilation?
○ How does cross compilation work with Clang and LLVM?
○ The extra bits you need to build a Toolchain.
○ Building applications and running them on qemu.

● About me
○ Working in the Linaro TCWG team on LLVM.
○ Wrote the LLVM doc “How to cross compile Builtins on Arm”

■ After I found it significantly harder than I had expected.



Definitions
● Host

○ The system that we run the development tool on.

● Target
○ The system that we run the generated program on.

● Native compilation
○ Host is the same as Target.

● Cross compilation
○ Host is different to Target.



Motivation for cross compilation
● Can be a significant productivity boost

○ Host is faster than target.
● The only option available

○ Target can’t run C/C++ compiler.
● Building an application for many platforms 

on the same machine.
● Bootstrapping a compiler on a new 

architecture.
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Complications
● Building an application requires more than just a compiler and linker

○ Header files for the target.
○ Target specific source code needs to be compiled for the right target.
○ Static and shared library dependencies for the target.

● Build system on the host needs to be configured.
● Shared library dependencies on target must be compatible with host.



Cross compilation and the LLVM toolchain
● Clang and other LLVM tools can work with multiple targets from same binary.
● Clang and LLD drivers can emulate drivers of other toolchains.
● Target controlled by the target triple.
● LLVM project does not have implementations of all the parts of toolchain.
● LLVM project includes some but not all of the library dependencies.



Toolchain components
Component LLVM GNU

C/C++ Compiler clang gcc

Assembler clang integrated assembler as

Linker ld.lld ld.bfd ld.gold

Runtime compiler-rt libgcc

Unwinder libunwind libgcc_s

C++ library libc++abi, libc++ libsupc++ libstdc++

Utils such as archiver llvm-ar, llvm-objdump etc. ar, objdump etc.

C library libc



Toolchain component choices
● Clang defaults chosen at build time, usually favour GNU libraries.
● Compiler runtime library

○ --rtlib=compiler-rt, --rtlib=libgcc.
○ Compiler-rt needed for sanitizers but these are separate from builtins provided by libgcc.

● C++ library
○ --stdlib=libc++, --stdlib=libstdc++.
○ No run-time option to choose C++ ABI library, determined at C++ library build time.

● Linker
○ -fuse-ld=lld, -fuse-ld=bfd, -fuse-ld=gold.
○ Driver calls ld.lld, ld.bfd, ld.gold respectively.

● C-library choice can affect target triple
○ For example arm-linux-gnueabi, arm-linux-musleabi.



Target Triple
● General format of <Arch><Sub-arch>-<Vendor>-<OS>-<Environment>

○ Arch is the architecture that you want to compile code for
■ Examples include arm, aarch64, x86_64, mips.

○ Sub-arch is a refinement specific to an architecture
■ Examples include armv7a armv7m.

○ Vendor captures differences between toolchain vendors
■ Examples include Apple, PC, IBM.

○ OS is the target operating system
■ Examples include Darwin, Linux, OpenBSD.

○ Environment includes the ABI and object file format
■ Examples include android, elf, gnu, gnueabihf.

● Missing parts replaced with defaults.



Clang Driver

clang

cc1 cc1as lld

clang --target=aarch64-linux-gnu func1.s hello.c -o hello

clang-7.0 -cc1as -triple 
aarch64-linux-gnu 
-target-cpu=generic 
-target-feature +neon
...

clang-7.0 -cc1 -triple 
aarch64-linux-gnu 
-target-cpu=generic 
-target-feature +neon
-target-abi aapcs
-Isystem /path/to/includes
...

Ld.lld -m aarch64linux 
-dynamiclinker 
/lib/ld-linux-aarch64.so
-L /path/to/system/libraries
-lc
...

Architecture: aarch64
Sub-architecture: not applicable
Vendor unknown
OS: linux
Environment: GNU



Clang driver and toolchains
● Driver mode

○ gcc, g++, cpp (preprocessor), cl (MSVC).
○ Set with option or inferred from filename clang, clang++, clang-cl.

● Target triple used to instantiate a ToolChain derived class
○ arm-linux-gnueabihf instantiates the Linux ToolChain.
○ arm-none-eabi instantiates the bare metal driver.

● Toolchain class has knowledge of how to emulate the native toolchain
○ Include file locations.
○ Library locations.
○ Constructing linker and non integrated assembler options.
○ Includes cross-compilation emulation.

● Not all functionality is, or could realistically be, documented.



Building a simple AArch64 Linux OS
● Choose to use compiler-rt, with undefined behaviour sanitizer with LLD as 

linker.
● Shopping list

○ AArch64 C library includes and library dependencies.
○ Clang, LLD.
○ AArch64 Compiler-rt sanitizer library.
○ qemu-aarch64 user mode emulator to test our application.



Obtaining toolchain components
● x86_64 host builds of clang and lld

○ Built from source on the host system.
○ The x86_64 stable release.

● Compiler-rt AArch64 libraries
○ Built from source (cross compiled) on the host system.
○ The aarch64 stable release

■ Prebuilt shared libraries have dependencies on libstdc++.

● C library and other library dependencies
○ Install AArch64 multiarch support.
○ Use a Linaro Binary Toolchain release.

■ Compilers, binutils, glibc...



Using a Linaro gcc toolchain from a directory
● Download and install the gcc toolchain for your target

○ https://releases.linaro.org/components/toolchain/binaries/
○ Should closely match your target triple. We will use is aarch64-linux-gnu.
○ Unpacks to a dir we’ll call installdir containing:

■ aarch64-linux-gnu, bin, include, lib, libexec, share

● Clang needs to be given the toolchain location and the sysroot location
○ --gcc-toolchain=/path/to/installdir

■ Clang is looking for lib/gcc/<target-triple> subdir.
○ --sysroot=/path/to/installdir/<target-triple>/libc

● Warning other gcc toolchains may have small differences in directory layout.
● Warning without --gcc-toolchain clang will use heuristics to find tools

○ Will often find the host ld in /usr/bin/ld as the linker.

https://releases.linaro.org/components/toolchain/binaries/


Location of runtime libraries
● Clang looks for a “resource directory” in a location relative to the binary for:

○ Compiler specific includes such as stddef.h
○ Target specific includes such as arm_acle.h and arm_neon.h
○ sanitizer includes in a subdirectory.
○ Runtime libraries such as compiler-rt.

● Print out location with --print-resource-dir
○ ../lib/clang/<release>/

● AArch64 compiler-rt sanitizer libraries need to be in the lib/linux 
subdirectory of the resource directory.

○ If you have downloaded the LLVM release the x86 package will only contain x86 runtime 
libraries.

○ If you build compiler-rt yourself, you’ll need to install to the resource directory.



Building and running the application

#include <iostream>
#include <string>

int func(void) {
    throw std::string("Hello World\n");
    return 0;
}

int main(int argc, char** argv) {
    try {
        func();
    } catch (std::string& str) {
        std::cout << str;
    }
    int k = 0x7fffffff;
    k += argc; //signed integer overflow
    return 0;
}

               

● Test is a slightly modified 
version of the ubsan 
example

○ Modified to throw an exception.
● We want to use as much of 

the LLVM libraries as 
possible

○ compiler-rt
○ libc++, libc++abi, 

libunwind



Building and running the application

prompt$ root=/path/to/clang/install_dir
prompt$ sysroot=/path/to/linarogcc/aarch64-linux-gnu/libc
prompt$ ${root}/bin/clang++ --target=aarch64-linux-gnu -fsanitize=undefined \
                            --rtlib=compiler-rt --stdlib=libc++ \
                            -nostdinc++ -I${root}/include/c++/v1 \
                            -Wl,-L${root}/lib \
                            --sysroot ${sysroot} \
                            --gcc-toolchain=/path/to/linarogcc \
                            -rpath ${root}/lib \
                            example.cpp -o example

prompt$ qemu-aarch64 -L ${sysroot} example
Hello World
example.cpp:16:7: runtime error: signed integer overflow: 2147483647 + 1 cannot be 
represented in type 'int'



Cross compiling the LLVM libraries yourself
● The home pages for the libraries have build instructions for standalone builds.
● Extra cmake options are required for cross-compilation.
● Build defaults to GNU library dependencies.
● Guide to cross compiling compiler-rt for arm available in LLVM docs.
● Similar principles can be used for libc++, libc++abi and libunwind.
● Need to be careful with the order that you build the libraries in.

○ Compiler-rt builtins do not depend on anything.
○ Libunwind needs c++ includes but not binary libraries.
○ Libc++abi needs c++ includes but not binary libraries and an unwinder such as libunwind.
○ Libc++ needs an abi library such as libc++abi.
○ Compiler-rt non builtin libraries need a c++ library.

 



Cross compilation hints and tips
● Name of clang binary is significant

○ <target-triple>-clang -> clang --target=<target-triple>
○ <config-filename>-clang -> clang --config <config-filename>
○ clang<driver-mode> -> clang --driver-mode=<driver-mode>

■ Most important is using clang++ for C++ files.

● The clang -v option will show the gcc toolchain selected.
● The --gcc-toolchain <path> option can be pointed at a gcc cross 

toolchain
○ For example the Linaro Binary Toolchain releases.

● The --sysroot option can be used as root path for includes and libraries.
● Clang can use cross compilation support from multi-arch Linux distributions

○ A chroot or container is useful to maintain consistency of builds.



Cross compilation hints and tips
● When using shared libraries make sure the host and target have the same 

libraries
○ Be careful that any rpath option applies on the target system.

● For cmake cross compilation
○ The trycompile step may not pick options that set the target, sysroot and gcc-toolchain

■ Can pass these in with -DCFLAGS and -DCXXFLAGS
○ For compiling bare-metal static libraries the option 

-DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY will skip the link step.
○ Use standalone builds with separate cmake invocations when cross-building the llvm libraries.

● You can use clang option --print-search-dirs to see effect of options
○ For example --target, --sysroot, --gcc-toolchain



Conclusions
● Clang can work well as a cross-compiler for a Linux environment if you have a 

cross compiling gcc installation available.
● Path of least resistance is to use the same default libraries as your target 

system.
● Clang bare-metal driver requires a lot of manual configuration.



Resources
● For general information: https://clang.llvm.org/docs/CrossCompilation.html   
● How to cross compile clang itself: https://llvm.org/docs/HowToCrossCompileLLVM.html
● My own experience in cross-compiling compiler-rt for Arm 

https://llvm.org/docs/HowToCrossCompileBuiltinsOnArm.html
● How to assemble a toolchain using llvm components http://clang.llvm.org/docs/Toolchain.html 

https://clang.llvm.org/docs/CrossCompilation.html
https://llvm.org/docs/HowToCrossCompileLLVM.html
https://llvm.org/docs/HowToCrossCompileBuiltinsOnArm.html
http://clang.llvm.org/docs/Toolchain.html


The End
Thanks for listening and good luck!



Backup



Building a bare-metal Arm application
● Target a Cortex-M3 with no RTOS, with newlib, compiler-rt, LLD linker.

○ --target=arm-none-eabi.
○ Use the GNU Arm Embedded Toolchain.
○ Clang will use the BareMetal Toolchain driver.
○ A linker script is needed to separate the Flash and Ram.

● Adapt the semihosting sample program from the GNU toolchain.
● Test with qemu-system-arm with -machine lms3811evb using semihosting

○ System mode emulates a development board and not just a CPU.



Complications
● No prebuilt binary for compiler-rt builtins on Cortex-M3

○ The compiler-rt builtins sources for armv7m include assembler files with floating point.

● The GNU ARM embedded toolchain sample uses specs files for configuration
○ Clang doesn’t support specs files.

● The clang BareMetal driver doesn’t support multilib
○ We will have to select the library that we need.

● LLD doesn’t support the section type COPY in linker scripts
○ Have to place the heap and stack using a different method.

● LLD always adds .a suffix for -L<library> even if <library> already has one
● Clang integrated assembler, LLD don’t handle the startup_CM3.S

○ Contains a .section with code but no “ax” flags. 



Building an application for a Bare Metal device
● Building newlib with clang

○ Possible but there may be some source changes. For example on Arm
■ __attribute__((naked)) on clang only allows assembler.
■ Integrated assembler does not support some of the syntax used.

● Building libc++, libc++abi and libunwind with newlib
○ Newlib 2.4 has some incompatibilities with libc++ locale
○ Depending on configuration Newlib may not define clock_gettime, needed by chrono
○ Some extra defines may be necessary:

■ __GNU_VISIBLE, _GNU_SOURCE, LIBCPP_HAS_NO_ALIGNED_ALLOCATION
○ Consider disabling threads and monotonic clock
○ Cmake option -DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY skips trycompile 

link step.


