
Everything you 
need to know 
about Containers 
Security

Track Containers

José Manuel Ortega



@jmortegac



Agenda

● Introduction to containers security
● Linux Containers(LXC)
● Docker Security
● Security pipeline && Container threats
● Tools for auditing container images



Virtualization vs containers



Virtualization vs containers



Security mechanims



Namespaces

● Provides an isolated view of the system 
where processes cannot see other 
processes in other containers

● Each container also gets its own network 
stack.

● A container doesn’t get privileged access 
to the sockets or interfaces of another 
container.



Cgroups && capabilities

● Cgroups: kernel feature that limits and 
isolates the resource usage (CPU, 
memory, network) of a collection of 
processes.

● Linux Capabilities: divides the privileges 
of root into distinct units and smaller 
groups of privileges



Linux Containers(LXC)



LXC

● Lightweight virtual machines
● VMs without the hypervisor
● Kernel namespaces
● Apparmor and SELinux profiles
● Seccomp policies
● Kernel capabilities and Control groups



LXC



LXC:limit resources



LXC:limit resources



Docker





Container pipeline



Docker images



Docker security
● Isolation via kernel namespaces
● Aditional layer of security Apparmor, SELinux, 

GRSEC
● Each container gets its own network stack
● Control groups for resources limiting
● Other interesting features….



Docker Content Trust

● We can verify the integrity of the image
● Checksum validation when pulling image 

from docker hub
● Pulling by digest to enforce consistent







Docker Capabilites
● A capability is a unix action a user can 

perform
● Goal is to restrict “capabilities”
● Privileged process = all the capabilities!
● Unprivileged process = check individual user 

capabilities
● Example Capabilities:

○ CAP_CHOWN
○ CAP_NET_RAW







Containers security is 
about limiting and 
controlling the attack 
surface on the kernel. 



Least privilege principle

● Do not run processes in a container as root to 
avoid root access from attackers.

● Enable User-namespace

● Run filesystems as read-only so that attackers 
can not overwrite data or save malicious scripts 
to file.

● Cut down the kernel calls that a container can 
make to reduce the potential attack surface.



Read only containers & volumes



Seccomp

● Restricts system calls based on a policy
● Block/limit things like:

○ Kernel manipulation (init_module, 
finit_module, delete_module)

○ Executing mount options
○ Change permissions
○ Change owner and groups





Docker bench security

● Auditing docker environment and containers

● Open-source tool for running automated tests 

● Inspired by the CIS Docker 1.11 benchmark

● Runs against containers currently running on 
same host

● Checks for AppArmor, read-only volumes, etc...
https://github.com/docker/docker-bench-securit
y

https://github.com/docker/docker-bench-security
https://github.com/docker/docker-bench-security


Docker bench security

● The host configuration
● The Docker daemon configuration
● The Docker daemon configuration files
● Container images and build files
● Container runtime
● Docker security operations





Lynis

● https://github.com/CISOfy/lynis-docker
● Lynis is a Linux, Mac and Unix security 

auditing and system hardening tool that 
includes a module to audit Dockerfiles.

● lynis audit system
● lynis audit dockerfile <file>

https://github.com/CISOfy/lynis-docker




Security Pipeline



CI/CD



CI/CD



Container threats



● Kernel Exploits(Dirty Cow exploit)
● Vulnerabilities like the glibc buffer 

overflow
● SQL injection attacks
● MongoDB and ElasticSearch 

ransomware attacks



● Don’t run containers as root
● Drop all capabilities and enable only needed
● Enable user namespaces
● Use seccomp for limit syscalls for avoid kernel 

exploits
● Keep the host kernel updated with last patches
● Mount volumes with read only 

Remember



Audit Container Images



● You can scan your images for known 
vulnerabilities

● Find known vulnerable binaries
○ Docker Security Scanning
○ Anchore Cloud
○ Dagda
○ Tenable.io Container Security

●



Docker security scanning



Docker security scanning





Anchore



Anchore



Anchore





Dagda



Tenable.io container security









References
● https://docs.docker.com/engine/security
● http://www.oreilly.com/webops-perf/free/files/docker-securi

ty.pdf
● http://container-solutions.com/content/uploads/2015/06/15.0

6.15_DockerCheatSheet_A2.pdf
● Docker Content Trust

https://docs.docker.com/engine/security/trust/content_trust
● Docker Security Scanning
● https://docs.docker.com/docker-cloud/builds/image-scan
● https://blog.docker.com/2016/04/docker-security
● http://softwaretester.info/docker-audit

●

https://docs.docker.com/engine/security
http://www.oreilly.com/webops-perf/free/files/docker-security.pdf
http://www.oreilly.com/webops-perf/free/files/docker-security.pdf
http://container-solutions.com/content/uploads/2015/06/15.06.15_DockerCheatSheet_A2.pdf
http://container-solutions.com/content/uploads/2015/06/15.06.15_DockerCheatSheet_A2.pdf
https://docs.docker.com/engine/security/trust/content_trust
https://docs.docker.com/docker-cloud/builds/image-scan
https://blog.docker.com/2016/04/docker-security
http://softwaretester.info/docker-audit




Thanks!

Contact:

@jmortegac

jmortega.github.io

about.me/jmortegac

 


