
Georg Rath

The State of
Containers in

Scientific
Computing

FOSDEM18/04.02.2018

NERSC

• Primary scientific computing facility of the office of science
• Two supercomputers (Cori, Edison), three clusters

– Over 800.000 cores
– Over 50 PB of storage in varying speeds

• Serving more than 6000 scientists
• Astrophysics, Climate & Earth Science, Chemistry, High Energy Physics,

Genomics,…

HPC in a nutshell

• A (large) number of compute nodes
• Connected by a High Speed Network
• Accessing data stored in a parallel filesystem
• Run as a shared resource
• Orchestrated by a workload manager

What is the hardest problem in scientific computing?

Installing Software

• Center provided software stack via Environment Modules
– Lmod, Modules Classic, Modules4

• Error-prone
• Slow*
• Unique
• Not portable
• Leads to user maintained software stacks

– That depend on system

And then Docker hit…

• Simple
• Portable
• Reproducible
• Leveraging relatively stable Linux APIs

– Namespaces
– cgroups

...and we wept.

• High demand by users and admins alike
• Absolutely not built for HPC
• Security nightmare

– access to Docker is root equivalent*
• A daemon on my compute node?

– No

What do we want?

• A way to run Docker images on HPC systems
• No fancy stuff

– Overlay networks
– Plugins
– Swarm/Kubernetes

• No daemon
• Secure
• Scalable
• Bonus: works on older kernels

Great minds think alike

Shifter Charliecloud Singularity

Governance NERSC LANL SyLabs Inc
(started at LBNL)

Mechanism setuid userns setuid, userns

Image Format squashfs Tar File squashfs (since 2.4)

Noteworthy Focus on HPC Lightweight “Scientific Docker”

What is container, really?

debootstrap stable containerfs/ http://deb.debian.org/debian/
unshare --mount --pid –fork
mount --bind containerfs containerfs
mount --make-private containerfs
cd containerfs

mount -t proc none proc
mount -t sysfs none sys
mount -t tmpfs none tmp
mount -t tmpfs none run

pivot_root . mnt
umount -l mnt
exec bash -i

Access to host hardware/libraries

• Violates containment
• Bind device file into container
• Inject host libraries into the container (eg. libcuda.so)

– Manually or via libnvidia-container
• Requires ABI compatibility between host/container libs
• Does not work with static linking
• Glibc issues

Do you see the problem?

FROM ubuntu:18.04

install Tensorflow
RUN apt-get install python3-pip python3-dev
RUN pip3 install tensorflow

COPY ai.py /usr/bin/ai.py

CMD [“/usr/bin/ai.py”]

The need for speed

• Binary build of Tensorflow is not optimized
• Modern processors need vector instructions for performance
• Theoretical Peak Performance Intel Haswell

– Scalar: ~ 130 GFLOPS
– AVX: ~ 500 GFLOPS

• Let’s fix this…

An easy fix?

[…]

RUN LD_LIBRARY_PATH=${LD_LIBRARY_PATH} \
bazel build --config=mkl \

--config="opt" \
--copt="-march=haswell" \
--copt="-O3" \
//tensorflow/tools/pip_package:build_pip_package && \

mkdir ${WHL_DIR} && \
bazel-bin/tensorflow/tools/pip_package/build_pip_package ${WHL_DIR}

[…]

* actual Dockerfile around 80 lines lot more sophisticated
** EasyBuild/Spack highly recommended

Does it pay off?

Portability

• Requires ”cross-compiling”
• Different containers with different tags
• Or leverage Docker “fat manifest” containers

– Introduced with Image Manifest v2.2
– Specifies architecture and features
– Not integrated yet

Conclusion

• Containers are a valuable tool for scientific computing
– User defined software stack

• Containers are not a panacea
– Portability and performance require work
– Reproducibility over time will be challenging as well

• Leveraging proven tools in conjunction with containers provides great
benefit

Questions?

Thank You

