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Abstract

Here we present Singularity, software developed to bring containers and reproducibility to

scientific computing. Using Singularity containers, developers can work in reproducible envi-

ronments of their choosing and design, and these complete environments can easily be cop-

ied and executed on other platforms. Singularity is an open source initiative that harnesses

the expertise of system and software engineers and researchers alike, and integrates seam-

lessly into common workflows for both of these groups. As its primary use case, Singularity

brings mobility of computing to both users and HPC centers, providing a secure means to

capture and distribute software and compute environments. This ability to create and deploy

reproducible environments across these centers, a previously unmet need, makes Singular-

ity a game changing development for computational science.

Introduction

The landscape of scientific computing is fluid. Over the past decade and a half, virtualization

has gone from an engineering toy to a global infrastructure necessity, and the evolution of

related technologies has thus flourished. The currency of files and folders has changed to appli-

cations and operating systems. The business of Supercomputing Centers has been to offer scal-

able computational resources to a set of users associated with an institution or group [1]. With

this scale came the challenge of version control to provide users with not just up-to-date soft-

ware, but multiple versions of it. Software modules [2, 3], virtual environments [4, 5], along

with intelligently organized file systems [6] and permissions [7] were essential developments

to give users control and reproducibility of work. On the administrative side, automated builds

and server configuration [8, 9] have made maintenance of these large high-performance com-

puting (HPC) clusters possible. Job schedulers such as SLURM [10] or SGE [11] are the meta-

phorical governors to control these custom analyses at scale, and are the primary means of

relay between administrators and users. The user requires access to consume resources, and

the administrator wants to make sure that the user has the tools and support to make the most

efficient use of them.
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The early days of these centers carried an atmosphere of friendly competition. Centers

worked hard to offer larger and faster clusters, and to support different kinds and scales of

work. As these centers grew, an emphasis on management, standards, stability, and service-

level requirements became increasingly important. From a provider’s perspective, it was neces-

sary to build a reliable and usable resource. From some researchers’ perspectives, however, this

same reliability translated to old, stale, and immobile software and systems. This static nature

coupled with distribution-specific software builds meant that service providers would ulti-

mately end up limiting the scope of computational science that their systems could support,

leaving out the long tails of science [12–14] and scientific diversity of nontraditional HPC user

bases.

Portable environments

The advent of virtual machines [4, 5] introduced the exciting reality than an entire environ-

ment, including software dependencies, libraries, runtime code, and data, could be encapsu-

lated and run anywhere. Virtual machines, however, also introduced large computational

overhead due to the required level of virtualization for emulating the OS and kernel. With the

addition of lightweight virtualization features to the Linux kernel (e.g., namespaces) a new

lightweight virtualization, containers [15, 16], became possible to implement. Implementa-

tions such as Docker, one of the container solutions made open source in 2013 [15, 16], offered

additional improvements over standard virtual machines. Containers could share resources

with the host without incurring much of the performance penalties of hardware-level virtuali-

zation [17].

The advent of containers has come in parallel with increased demand for customization by

the user, meaning user-defined software stacks (UDSS) that require custom libraries, build

environments, and commonly, entire operating systems. Portable environments address this

need comprehensively. In less than a few decades, the early sharing of unreproducible installa-

tions of libraries and applications [13] has been extended to a need to share entire operating

systems, especially for niche communities wanting to distribute and run UDSS.

Software unfit for scaled science. The promise of portable environments was not deliv-

ered quickly to all communities alike. For the industry at the forefront of virtualization, the

implementation and feature set offered by container technologies is very much in alignment

with their need for enterprise micro-service virtualization and web-enabled cloud applications.

For the scientific world, and specifically HPC communities, the same technology does not fit

cleanly. The reproducibility crisis [18–20] in early 2015 made container-based applications

especially yearned for by these research communities, for which long term success hinges on

the replication of both scientific findings and computational environments. For these groups,

installing Docker on some kind of HPC environment would mean an unreasonable level of

security risk. Thus, it was quickly apparent that these two general communities, despite having

common features, differed in ways that would make a shared implementation generally

incompatible. The unfortunate reality was that Docker could not be embraced by a large group

of people that needed it greatly.

The lack of compatibility in cluster environments and computational centers did not pre-

vent researchers from embracing containers for science. Several groups across genetics

[21, 22], neuroscience [23], and others [24, 25] introduced container-based scientific analyses,

and this was a reflection of two things. First, the growing popularity of large data did not war-

rant smaller data extinct or lacking value [26–28], and many researchers could thus develop

reproducible containers on their local machines. Docker was well suited for this task, and it

eliminated many headaches in providing a simple way to collaborate on code or applications
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without the hassle of having different software versions or broken dependencies. Second, con-

tainers were ideal not just for the final analysis, but for the development of it. A user is arguably

most comfortable working with his or her text editor, programs, and environment of choice,

and containers made it possible to work locally and develop in a specific environment simulta-

neously. While recent improvements have been made in extending a cluster resource to a

user’s desktop (e.g. Jupyter Hub [29]), the most common cluster experience is still logging in

to a machine via a command line with a secure shell (SSH), and needing to install software and

scripts. If an internet connection is not available, this workflow may not even be possible.

When comparing this headless option as a base requirement for working to an instantly avail-

able, local machine, the easier of the two is obvious. However, this mobility of compute

afforded in a local environment is an entirely different problem than the need to scale

computation.

Early initiatives for scientific containers. As researchers also started embracing contain-

ers for science, the desire to use these same containers at scale grew as well. HPC environments

provided by research institutions began receiving requests to allow researchers to run their

containers at scale. The community responded with a flood of efforts toward this goal, notably

from national labs including Los Alamos National Lab (LANL) with CharlieCloud [30], the

National Energy Research Scientific Computing (NERSC) with Shifter [31], and others risking

or not caring about the security implications of Docker. While each solution has optimal use

cases, each also comes with caveats and loopholes, discussed in more detail later in this paper.

Another growing initiative of many institutions has been, with careful work to address

security and affordability, a movement to using cloud resources. In fact, behind the scenes of

many institutions that do not have a formal relationship with a cloud provider, Principal

Investigators (PIs) have pursued using cloud resources to move their research projects for-

ward, including many notable individual efforts [32], some of which have driven the establish-

ment of new standards and relationships [33, 34]. Ideally, the products developed by

researchers across academia and industry should be agnostic to the deployment environment,

whether that be a protected cluster, or an industry cloud provider such as Google Cloud Plat-

form [35], Amazon Web Services [36], or Microsoft Azure [37]. Portability is essential for rep-

lication of the work, and so any product that is limited to where it can be deployed is instantly

limited in the extent that it can be reproduced.

The needs of scientists

The technological innovation of container-based environments, the need for scalable and

reproducible products, a preference for usability, and the necessity to interoperate on every-

thing from laptops to large scale HPC resources defines our current landscape. Data files and

random bits of source code, the formats that were previously the currency of interest when

exchanging scientific workflows, were replaced with software to manipulate them, and now

the currency of interest is combining these two things into a single encapsulated unit. For the

end-user, the lines are blurred between cloud and local compute environments: both are

machines that the user must connect to that offer some amount of memory and disk space.

Regardless, a container solution is badly needed that is agnostic to these details, and can move

seamlessly between the two.

Singularity containers. Here we introduce Singularity, a container solution created by

necessity for scientific application driven workloads. Singularity offers mobility of compute by

enabling environments to be completely portable via a single image file, and is designed with

the features necessary to allow seamless integration with any scientific computational

resources. We will first discuss the problems and use cases that Singularity is ideal for, followed

Singularity: Scientific containers for mobility of compute

PLOS ONE | https://doi.org/10.1371/journal.pone.0177459 May 11, 2017 3 / 20

https://doi.org/10.1371/journal.pone.0177459


by talking about the software itself. Singularity is the first of its kind to be easy for both users

and administrators, and was developed in collaboration by HPC administrators, developers

and research scientists alike. We started our work aiming to solve the problem of a lack of

reproducible, portable environments for science. Our hypothesis was that we could invent

data structures and accompanying methods in a software package to make this possible. We

have validated our work in the most powerful manner possible—installation and extensive use

after detailed review by supercomputer centers globally. Singularity represents a direct imple-

mentation to demonstrate the validity of this novel scientific idea. We will focus our discussion

on solving these problems and usage, and it will be followed by a comparison of Singularity to

other Linux containers that do not address the problem fully. Finally, we will provide forward

thinking about how Singularity fits in with this continually changing landscape.

The problems that singularity solves

This section will briefly overview a selection of problems that Singularity aims to solve. We

start with a comparison to currently existing solutions, followed by how Singularity addresses

concerns with these approaches, and then example use cases of such problems.

Available container solutions

While several software management solutions exist that provide flexibility and customization,

including environment modules [3] for Linux environments in production (CHOS) [38], our

focus will be on container solutions that house not just modular software, but potentially entire

systems. We provide an overview of our comparison of the leading container technologies in

(Table 1), which has been extended and adopted from [30]. As it is the case that technologies

Table 1. Container comparison.

Singularity Shifter Charlie Cloud Docker

Privilege model SUID/UserNS SUID UserNS Root Daemon

Supports current production Linux distros Yes Yes No No

Internal image build/bootstrap Yes No* No* No***

No privileged or trusted daemons Yes Yes Yes No

No additional network configurations Yes Yes Yes No

No additional hardware Yes Maybe Yes Maybe

Access to host filesystem Yes Yes Yes Yes**

Native support for GPU Yes No No No

Native support for InfiniBand Yes Yes Yes Yes

Native support for MPI Yes Yes Yes Yes

Works with all schedulers Yes No Yes No

Designed for general scientific use cases Yes Yes No No

Contained environment has correct perms Yes Yes No Yes

Containers are portable, unmodified by use Yes No No No

Trivial HPC install (one package, zero conf) Yes No Yes Yes

Admins can control and limit capabilities Yes Yes No No

In addition to the default Singularity container image, a standard file, Singularity supports numerous other formats described in the table. For each format

(except directory) the suffix is necessary for Singularity to identify the image type.

*relies on Docker

**with security implications

***depends on upstream

https://doi.org/10.1371/journal.pone.0177459.t001
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change quickly, the authors would like to note that this table, and the following discussion, is

relevant to the time of writing of this paper.

Software modules and package managers. Environment modules [3] allow users to

enable or disable software package by way of a user interface to manipulate paths to executa-

bles that can be found, and package managers ([39], [40]) perform installation to a location

given that the user has write permission to that location. Modules and package managers make

installation easy, however they are not portable environments in that they can encapsulate a

workflow, data, and the entire operating system itself.

As an example, we can compare Singularity to the Nix package manager [40]. Nix supports

reproducibility in that it can be installed across a range of hosts, and installs software to the

host without conflicting with the host. However, a package manager is not a portable environ-

ments or a containerized workflow. Given that a user has set up a specific configuration of soft-

ware packages, environment variables, and custom script for his or her analysis, as a package

manager, Nix does not provide an easy means to package that entire environment (software,

environment, and importantly, the operating system itself) to be moved and run anywhere.

While an equivalent modular software might be installed on two different hosts, it would still

not be possible to run an Ubuntu OS on CentOS, for example. In contrast, a container built

with the Singularity software will include all of the environment variables, software, custom

scripts, and operating system that the user specified, and can be moved seamlessly to another

host and be executed. There is no dependency on needing to re-use some central package

manager to install software, or even re-build the image at all. For these reasons, Singularity is

fundamentally different than a package manager.

In summary, while package managers and modules are a cornerstone to traditional HPC,

and are installed on almost every scientific center, they do not address the same problems as

Singularity. For users that have preference for a package manager or module manager, how-

ever, Singularity would allow for installation of it in a container, and then immediate use on

any cluster, even if the cluster does not natively support it.

Virtual machines. A discussion of containers would not be complete without a mention

of virtual machines. Virtual machines [4, 5] (VM) are emulators for computer systems, and

costly to run in that they deploy a layer of resource emulation and an entire duplicate operat-

ing system on top of the emulation layer. In the context of portable and reproducible environ-

ments, a user might create a specification for a VM that includes a download of dependencies,

and installation of software. The virtual machine provides complete isolation, making it safe

for users to obtain root privileges within that single environment, however this also could be a

point of bypassing network and file system security [41–43]. Isolation also creates additional

complexities when trying to access host specific resources such as scaled networking (e.g. Infi-

niBand [44]) or hardware accelerators. Finally, virtual machines are not quick to deploy or

transfer between systems, and for the common scientist, this simple fact that usability is slow

makes them less desirable to use.

CharlieCloud. Charliecloud is an open-source software based on the idea of user-defined

software stack (UDSS). The original release notes [30] describe the software as “an industry-

standard, reproducible workflow based on Docker” with an emphasis on being a user name-

space implementation that removes the need for the user to have root privileges. The workflow

of this software is to build a UDSS using Docker, extract (or untar) the contents into a con-

trolled directory location, and then execute code within the directory by way of a C executable.

CharlieCloud can be then be used for running Docker containers.

There are several prominent issues with this approach, the first being compatibility. The

software makes use of kernel namespaces that are not deemed stable by multiple prominent

distributions of Linux (e.g. no versions of Red Hat Enterprise Linux or compatibles support
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it), and may not be included in these distributions for the foreseeable future. A closely related

issue is one of dependencies. The workflow begins with Docker. While Docker is becoming a

standard technology in the enterprise industry, it would be desirable for this additional soft-

ware to not require it for baseline operation. The software is emphasized for its simplicity

and being less than 500 lines of code, and this is an indication of having a lack of user-driven

features. The containers are not truly portable because they must be extracted from Docker

and configured by an external C executable before running [30], and even after this step,

all file ownership and permissions are dependent on the user running the workflow. Thus,

while CharlieCloud is a good effort and still holds promise to develop further, due to its

limited functionality, portability, and dependencies, it is not a robust mechanism for

reproducibility.

Shifter. Shifter [31] is an effort led by NERSC, and was originally based on chroot(2) [45].

It also uses Docker as a base image building workflow. While it has been successfully shown to

operate well for production workflows [45], the user must submit a finished image to a root

controlled gateway, a Dockerized RESTful interface to handle creation, tracking, and manage-

ment of images, to finish configuration. It connects seamlessly to host-based resources by way

of bind mounts and integrates with the resource manager to provide a unified container-based

workflow. This integration requires a complex administrative setup of the resource manager,

daemons, and depending on the architecture needs, a complete hardware specific resource for

the image gateway. Overall, like CharlieCloud, it is designed to work with (but modify) Docker

containers and its setup and management is a non-trivial task.

Docker. As alluded to above, Docker is the industry standard for micro-service virtualiza-

tion and it is a fantastic solution for this need, but unfortunately does not meet the require-

ments for widespread scientific computational usage quite as well. Docker caters to a specific

need to package and deploy applications and services. It was the first software to provide an

intuitive API to harness kernel-level technologies (e.g., linux containers, control groups, and a

copy-on-write filesystems), and use namespaces (e.g. user, process, and network) to allow for

isolation of containers from the host [46].

One of the major factors that prevents Docker from being the standard container technol-

ogy in HPC is its security concerns. From an IT security perspective, a machine can be consid-

ered compromised if any user is able to run arbitrary code as the root user. While Docker

takes steps to mitigate the risk of allowing users to run arbitrary code, there is a fatal design

flaw that limits Docker’s ability to run in HPC environments: for every container that Docker

runs, the container process is spawned as a child of a root owned Docker daemon. As the user

is able to directly interact with and control the Docker daemon, it is theoretically possible to

coerce the daemon process into granting the users escalated privileges. Any user being able to

escalate up to system administrator status, a user called “root”, would introduce unthinkable

security risks for a shared compute environment.

While this is not a problem for enterprise usage of Docker, as the system administrator

knows what code will be running and the command being used to invoke Docker, a system

administrator of an HPC center is not afforded the same level of control over what code is

being run. One of the core challenges of running an HPC center dedicated to research is allow-

ing users to run arbitrary code while simultaneously ensuring that the system is not compro-

mised by malicious code (whether intentionally malicious or not).

The goals of singularity

Having discussed the problem space and currently available solutions, we will next discuss

how the Singularity can and has provided a robust solution to these issues.
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Mobility of compute. Mobility of compute is defined as the ability to define, create, and

maintain a workflow locally while remaining confident that the workflow can be executed on

different hosts, Linux operating systems, and/or cloud service providers. In essence, mobility

of compute means being able to contain the entire software stack, from data files up through

the library stack, and reliability move it from system to system. Mobility of compute is an

essential building block for reproducible science, and consistent and continuous deployment

of applications.

Singularity achieves this by utilizing a distributable image format that encapsulates the

entire container and stack into a single image file. This file can be copied, shared, archived,

and thus all standard UNIX file permissions also apply. Additionally, Singularity containers

are portable across different C library versions and kernel implementations.

Reproducibility. As mentioned above, Singularity containers utilize a single file which is

the complete representation of all the files within the container. Many of the same features that

facilitate mobility also facilitate reproducibility. Once a contained workflow has been defined,

the container image can be snapshotted, archived, and locked down such that it can be used

later and the user can be confident that the code within the container has not changed. The

container is not subject to any external influence from the host operating system (aside from

the kernel which is ubiquitous of any OS level virtualization solution).

Another fundamental aspect of research reproduction is the preservation and validation of

data, and Singularity has a feature under development that will ensure validation of container

contents. Via direct integration of SHA256 hashing [47], Singularity will provide a method of

container validation that guarantees that a container image being distributed has not been

modified or changed. This is essential in ensuring compliance with White House Office of

Management and Budget Circular A-110 [48], which states the need for data preservation and

the ability to validate research results for federally funded projects. After the bootstrapping

process, the SHA256 hash of the image file is generated and displayed for the user. When the

image is later run using the − − hash option, its hash will be regenerated and displayed for the

user to see.

When publishing scientific results, an author can distribute the Singularity image used in

the paper alongside its hash, allowing others to independently validate the results using code

that is verifiably identical to the code used in the original report. Any image repositories that

build and serve Singularity images can also take advantage of this feature by storing the hash as

metadata with the built images. Users that obtain images from these repositories can then use

the hash to confirm a complete download of the image files.

User freedom. System integrators, administrators, and engineers spend a lot of time and

effort maintaining the operating systems on the resources they are responsible for, and as a

result tend to take a cautious approach on their systems. This leads to the common occurrence

of mission-critical production systems being provisioned with old operating systems. These

older operating systems may not receive critical security updates and also have fewer available

software packages. It also leads to maintaining software or libraries that are either old or

incompatible with the software that a particular user needs. Software building and installation

is complex, and even with automation tools can be a non-trivial task due to incompatibilities

or conflicts with other installed programs.

Singularity can give the user the freedom they need to install the applications, versions, and

dependencies for their workflows without impacting the system in any way. Users can define

their own working environment and literally copy that environment image (a single file) to a

shared resource, and run their workflow inside that image.

Support on existing traditional HPC resources. There are a lot of container systems

presently available [15, 49] which either are designed as enterprise solutions, a replacement for
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virtual machines, cloud-focused solutions, or they require kernel features that are not yet sta-

ble, not yet available, or both.

Replicating a virtual machine cloud-like environment within an existing HPC resource is

not a reasonable task, but this is the direction one would need to take to integrate a technology

like Docker into traditional HPC. The use cases do not overlap nicely, nor can the solutions be

forcibly wed.

The goal of Singularity is to support existing and traditional HPC resources as easily as

installing a single package onto the host operating system. For the administrators of the hosts,

some configuration may be required via a single configuration file, however the default values

are tuned to be generally applicable for shared environments.

Singularity can run on host Linux distributions from RHEL6 (RHEL5 for versions lower

than 2.2) and similar vintages, and the contained images have been tested as far back as Linux

2.2 (approximately 14 years old). Singularity natively supports technologies such as InfiniBand

and Lustre, while at the same time integrating seamlessly with any resource manager (e.g.

SLURM, Torque, SGE, etc.) as a result of the fact that Singularity is run like any other com-

mand on the system. Singularity also includes a SLURM plugin [10, 50] that allows SLURM

jobs to be natively run from within a Singularity container. The development and desire for

this integration is a champion example of the strength of community developed, open-source

software.

Example use cases

A container solution that provides mobility of compute, reproducibility, user freedom, and

extensibility across HPC resources is desired by many different user groups. Here we provide a

sample of example use cases.

The academic researcher. The academic researcher wants to develop an analysis locally,

meaning using a particular operating system, set of software, and library of functions, to work

with some data to produce a particular output. The researcher then needs to be able to take that

analysis, and move it to a different infrastructure to run at scale. The researcher then would like

to publish and distribute the entire contained analysis and its corresponding hash alongside the

results of the research, allowing others to easily reproduce and validate the results. Singularity is

optimized for this use case. The academic researcher would make a Singularity container with

scripts and dependencies, run it on his or her cluster, perhaps mapping drives to write data out-

puts, and then sharing the image and its hash with distribution of the work.

The server administrator. The server administrator is managing a shared, multi-tenant

resource to a number of users. As it is a shared system, no users have root access and it is a con-

trolled environment managed by the server administrator and his team. To keep the system

secure, only this group is granted root access and control over the state of the operating system.

If a user is able to escalate to root (even within a container) on the resource, the user can

potentially do bad things to the network, cause denial of service to the host (as well as other

hosts on the same network), and may have unrestricted access to file systems reachable by the

container.

To mitigate security concerns like this, Singularity does not provide the ability to escalate

permission inside a container. With Singularity containers, if a user does not have root access

on the target system, the user cannot escalate privileges within the container to root either.

The Server Administrator would instruct his users to have an endpoint (a local workstation,

laptop, or server) where they have root access to perform write operations to images, and then

move those images onto the cluster to run at scale. Considering the prevalence of laptops, espe-

cially at academic institutions, this is not an unreasonable or unmanageable mitigation.
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Eliminate redundancy in container technology. A lot of time and energy have gone into

developing Docker images, and Docker is being encouraged by several journals for reproduc-

ibility of tools [51]. Thus, a powerful use case is to run Docker images in an HPC environment

using Singularity, which has been developed to work seamlessly with Docker. Image names

that are local files can be swapped out for a docker endpoint, for example:

$ singularity shell ubuntu.img

$ singularity shell docker://ubuntu:latest

Would each create an interactive shell for an ubuntu image. The first is an image that the

user has generated locally, and the second is creating an image on demand by downloading

layers from the Docker Registry. This interchangeability works for bootstrap, import, and

shell. Additionally, Singularity has functionality that enables users to bootstrap an image with

a local Docker image that is not hosted on the Docker Registry.

Running a container at scale. The final example use case pertains to running a container

at scale. The approach of using a single image for a container format is advantageous in that

on a large, parallel file system, all metadata operations within the container occur within the

container image as opposed to the metadata server.

The singularity software

This paper encompasses a review of the software as of version 2.2. The initial version (1.0) was

created by Gregory M. Kurtzer at Berkeley National Lab, and the author base has since

expanded to include engineers from Stanford Research Computing (author VS), the University

of Michigan (author MWB), along with substantial contributions from others (see Acknowl-

edgements and the AUTHORS file within the distribution source code). This discussion of the

software is catered to the user group, and for administration documents we point the reader to

http://singularity.lbl.gov/admin-guide.

The container

Singularity utilizes container images, which means that when a user enters and works within

the Singularity container, he or she is physically located inside of this image. There is no stan-

dard definition for containers, and our usage of the term refers to a portable environment. For

a detailed description of Linux Containers, which drive Docker and other container technolo-

gies, we refer the reader to Section 2 of Priedhorsky et. al. [30]. The Singularity container

image encapsulates the operating system environment and all application dependencies neces-

sary to run a defined workflow. If a container needs to be copied, this means physically copy-

ing the image. While a standard image file is typically used for containers, other container

formats are also supported (Table 2).

Supported URIs. Singularity also supports several different mechanisms for obtaining the

images using a standard URI format:

• http://—Singularity will use Curl to download the image locally, and then run from the local

image

• https://—Same as above using encryption

• docker://—Singularity can pull Docker images from a Docker registry, and will run them

non-persistently (e.g. changes are not persisted as they can not be saved upstream)

• shub:// Singularity can pull Singularity images from a Singularity image registry (Singularity

Hub, under development)
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Structure. A Singularity container has several files that directly interact with the container

at runtime. These files and their descriptions are listed below:

1. /singularity—A file that contains a user-specified script to be run when the container is

executed directly or through the ‘singularity run’ command.

2. /.env/ A directory that contains an arbitrary number of files to be sourced on container run-

time. Files are to be named by the convention XX − �, where XX represents a two digit num-

ber describing priority (higher numbers have higher priority) and � represents an arbitrary

string (e.g. 01 − docker)

3. Entrypoint—Scripts executed when corresponding singularity command is called, and

passes the extra command line arguments into the executed binary

• /.exec—Sources the environment files in /.env/ and executes the user specified command

• /.shell—Sources the environment files in /.env/ and executes /bin/sh

• /.run—Sources the environment files in /.env/ and executes the runscript located at

/singularity

4. Header—Each singularity image contains an image header. The contents of this header are

under development and will include:

• SHA256 hash of the image (if generated).

• Bit switch describing if the image has been modified since last singularity hash operation.

• Bit switch describing if image is static (unmodifiable). Images with this bit set will be

unable to be ran in writable mode.

• Architecture of the image

• Metadata associated with the image

Image contents. Within a particular container image one can include a base operating

system’s application and library stack, custom or specific scientific programs, data, scripts and

analysis pipelines. The container images, including these contents, are highly portable between

Linux distributions, as long as the binary format (e.g. ELF x86_64) is compatible. For example

a Centos or Debian image can be executed on Mint or Slackware.

Table 2. Container formats supported.

Format Description

directory Standard Unix directories containing a root container image

tar.gz Zlib compressed tar archives

tar.bz2 Bzip2 compressed tar archives

tar Uncompressed tar archives

cpio.gz Zlib compressed CPIO archives

cpio Uncompressed CPIO archives

In addition to the default Singularity container image, a standard file, Singularity supports numerous other

formats described in the table. For each format (except directory) the suffix is necessary for Singularity to

identify the image type

https://doi.org/10.1371/journal.pone.0177459.t002
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Image permissions. The treatment of Singularity images as standard files simplifies man-

agement and access controls to well known POSIX based file permission. If you either own a

container image, or have read access to that container image, you can start a shell inside that

image. If you wish to disable or limit access to a shared image, you simply change the permis-

sion ACLs to that file.

Security. Singularity does not provide a pathway for privilege escalation (which makes it

truly applicable for multi-tenant shared scientific compute resources). This means that in the

runtime environment, a user inside a Singularity container is the same user as outside the con-

tainer. If a user wants to be root inside the container, they must first become root outside the

container. Considering on most shared resources the user will not have root access means they

will not have root access within their containers either. This simple concept thus defines the

Singularity usage workflow.

For more technical details, we direct the reader to our administrative documentation

(http://singularity.lbl.gov).

Singularity usage workflows

The standard usage workflow for working with an image typically means the user develops it

locally on his or her own resource (laptop, workstation, virtual machine, etc), optionally com-

presses it, and moves it to another filesystem that has Singularity installed to run. If the user

does not have root on that system, he or she will not be able to make any changes to the image

once on that system. However, the user will be able to use the container and access the data

and files outside the container as easily as he or she would on the original system or virtual

machine where the image was developed. Images can serve as stand-alone programs, and can

be executed like any other program on the host.

The general workflow moves from development on an endpoint to a shared computational

resource (Fig 1). One the left side, there is an endpoint that the user controls. This is typically a

laptop, workstation, or server. In this space the user can create, modify, and update a container

as needed. Once a container is created with the necessary applications, libraries and data

inside, it can be easily shared to other hosts and executed without having root access. Making

changes to the container again requires returning to the endpoint system with root, and re-

Fig 1. Singularity usage workflow. The standard Singularity Usage Workflow involves a working endpoint (left) where the user has root,

and a container can be created, modified and updated, and then transferred to a shared computational resource (right) to be executed at

scale.

https://doi.org/10.1371/journal.pone.0177459.g001
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uploading the container to the shared resource. In the case that a user does not have root on

their endpoint (e.g., Windows), Singularity containers can be developed with a virtual

machine, one that is provided at https://github.com/singularityware/singularity-vagrant.

Docker integration

Singularity supports the ample amount of work that has gone into developing Docker images

without relying directly on the user to install the Docker engine. This is done by way of har-

nessing the Docker Registry API, a RESTful interface that gives access to image manifests, each

of which contains information about the image layers. Each layer is a compressed set of folders

and files that can be extracted directly into a Singularity image. Additional information about

the environment and runtime commands are also extracted from this manifest, and included

into the Singularity image. By way of the docker uri (docker://) the user can bootstrap, run,

and shell Docker images with only the requirement of an internet connection.

Command line examples

Here we will provide some common Singularity use cases. A summary of commands is

included in Table 3, and for more detailed description, we recommend the reader to see the

User Guide at http://singularity.lbl.gov/user-guide. For each of these use cases, we have pro-

vided an example command using a local image (e.g., ubuntu.img) or an example image from

the Docker Registry (eg, docker://ubuntu:latest).

Table 3. Singularity commands.

Global Options

−d − −debug Print debugging information

−h − −help Display usage summary

−q − −quiet Only print errors

− − version Show application version

−v − −verbose Increase verbosity +1

−x − −sh −debug Print shell wrapper debugging information

General Commands

help Show additional help for a command

Container Usage Commands

exec Execute a command within container

run Launch a runscript within container

shell Run a Bourne shell within container

test Execute any test code defined within container

Container Management Commands (requires root)

bootstrap Bootstrap a new Singularity image

copy Copy files from your host into the container

create Create a new container image

export Export the contents of a container via a tar pipe

import Import/add container contents via a tar pipe

mount Mount a Singularity container image

Singularity command descriptions available via singularity –help. For all of the commands in the table, the

general usage is: singularity [global options. . .] <command>[command options. . .] Options and arguments

must be separated by spaces, and not equals (=) signs (e.g. –bind <path>).

https://doi.org/10.1371/journal.pone.0177459.t003
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Creating a container. A container is a file, and so creating it simply means creating the

file, optionally with a particular size. In the example below, we create an image of size 4000MB.

$ sudo singularity create –size 4000 ubuntu.img

Once you have created the image file, it is essentially an empty bucket waiting to be filled.

The process of filling the container is called “bootstrapping” and this is done by using a boot-

strap definition recipe (e.g., ‘ubuntu.def’ in the example below) that installs a base operating

system and then runs the commands necessary to install the application stack. The format for

this command is as follows:

$ sudo singularity bootstrap ubuntu.img ubuntu.def

Shelling into a container. The user might want to launch an interactive shell within a

container image. The following shows how the user would shell into a local container called

‘ubuntu.img’:

$ singularity shell ubuntu.img

If we add the − −writable or −w option we can write to the container, and we need root

privileges:

$ sudo singularity shell –writable ubuntu.img

The user may also want to run the Singularity version of a Docker container on demand.

The command below will use the Docker Registry to download image layers into a Singularity

image to a temporary location, and then shell into it:

$ singularity shell docker://ubuntu:latest

Container run. For this next use case, a container acts as a function to perform a specific

task. For example, a researcher might have a Python executable to take various inputs for an

analysis. In this scenario, it is useful to know that each container can optionally have a run-

script, a file called singularity at the root of the image file system. Given that this file exists, this

script will be executed when the container is run as an executable. If no runscript exists, run-

ning the container as an executable shells into the image. The first way to run an image is to

use the full command, “singularity run”, with any additional arguments:

$ singularity run analysis.img –input1 arg1 –input2 arg2

In the example above, the runscript is expected to know how to parse inputs and argu-

ments. The second way to running a container is to treat the image as an executable:

$ ./analysis.img –input1 arg1 –input2 arg2

By default, Singularity launches the container image in read only mode (so it can be easily

launched in parallel).

Container execute. We may be interested in sending a custom command to a container,

in which case we are interested in exec. For example, here we use the executable cat to print the

contents of a file to the terminal:

$ singularity exec centos.img cat /etc/redhat-release

CentOS Linux release 7.2.1511 (Core)
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The command is run inside the container (and output printed to the local machine) with-

out needing to shell into it, or touch the runscript. This would be useful for a quick glance at a

file, or with the − − writable argument, to quickly make changes to the container image.

Shared and mounted volumes

Singularity “swaps” out the currently running root operating system on the host for what is

inside the container, and in doing so none of the host file systems are accessible once inside

the container. As a workaround for this, Singularity will bind those paths back in via two pri-

mary methods: system defined bind points and conditional user defined bind points.

System defined bind points. The system administrator has the ability to define what bind

points will be included automatically inside each container. The bind paths are locations on

the host’s root file system that should also be visible within the container. Some of the bind

paths are automatically derived (e.g. a user’s home directory) and some are statically defined

(e.g. “bind path =” in /etc/singularity/singularity.conf).
User defined bind points. If the system administrator has enabled user control of binds

(via “user bind control = yes” in this same configuration file, the user will be able to request

bind points within container processes. The most typical example of this is the − − bind option.

For example, here we bind /tmp to /scratch:

$ singularity run –bind /tmp:/scratch/ analysis.img

For more details on bind points, we direct the reader to http://singularity.lbl.gov/docs-mount.

Compatibility with standard work-flows, pipes and IO

Singularity is a command line driven interface that is designed to interact with containers and

applications inside the container in as transparent a manner as possible. This means that the

user can not only run programs inside a container as if they were on the host directly, but also

redirect IO, pipes, arguments, files, shell redirects and sockets directly to the applications

inside the container. Here are some examples of this functionality:

1] singularity exec centos.img xterm

2] singularity exec centos.img python script.py

3] singularity exec centos.img python </path/to/python/script.py

In 1], we run the image’s xterm. In 2], we run script.py on our local machine using the

python inside the container. In 3], we accomplish the same thing, but by way of a pipe.

Bootstrapping containers

The idea of “bootstrapping” an image means starting from a previously generated template. In

the case of Singularity, this means that we can bootstrap an image from scratch (building from

a compatible host), or bootstrap a Docker image. Bootstrapping will be discussed in detail, as it

is one of the more common use cases. For each bootstrap example that will be discussed, we

can bootstrap from the command line, or use a build specification file, a file with a standard

name “Singularity” (akin to “Dockerfile”) for more customization.

The bootstrap specification header. The Header describes the core operating system to

bootstrap within the container. Here the user configures the base operating system features

that are needed within the container. Examples of this include Linux distribution, docker

image, version, and core packages. The Bootstrap keyword identifies the Singularity module

that will be used for building the core components of the operating system. At the time of this
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writing, supported modules include yum, debootstrap, arch, and docker. For a complete over-

view see http://singularity.lbl.gov/bootstrap-image

Bootstrap specification sections. The rest of the definition is comprised of sections or

blobs of data. Each section is defined by a % character followed by the name of the particular

section. All sections are optional, and including one for setup (%setup), post installation com-

mands (%post), specification of runscript commands (%runscript) and image testing (%test).

These sections are integrated during the bootstrap process in this order.

• %setup: This section is a script that will be executed on the host outside the container during

bootstrap. The path to the container is accessible from within the running environment via

the variable $SINGULARITY_ROOTFS.

• %post This section is also executed once during bootstrapping, but instead is run from

inside the container. This is where the user should put additional installation commands,

downloads, and configuration for the container.

• %runscript: This section is another script, but it does not get executed during bootstrapping.

Instead it gets persisted within the container to a file called /singularity that is executed when

the container image is run (either via the “singularity run” command or via executing the

container directly). This is the file that, given a bootstrap of a Docker image, will run the

same command specified by the Docker ENTRYPOINT. The user can change this default

behavior to use CMDwith a specification in the header.

• %test: This section is optional, and is run at the very end of the boostrapping process to give

the user a chance to validate the container during the bootstrap. The user can also execute

this script through the container itself, meaning that the container’s validity can always be

tested as it is transported to different hosts.

Bootstrap example. The final bootstrap file might look like this, in the case of a Docker

bootstrap:

BootStrap: docker

From: ubuntu:latest

%runscript

exec echo “This is what happens when you run the container” “$@”

%post

echo “Install additional software here”

For more information on bootstrapping images, including Docker and bootstrapping from

scratch, we point the reader to our Bootstrap documentation (http://singularity.lbl.gov/

bootstrap-image).

Best practices for bootstrapping. When bootstrapping a container, it is best to consider

the following:

• Install packages, programs, data, and files into operating system locations (e.g. not /home,
/tmp, or any other directories that might get commonly binded on).

• If any special environment variables need to be defined, add them to the /environment file

inside the container. Files should never be owned by actual users, they should always be

owned by a system account (UID<500).
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• Ensure that the container’s /etc/passwd, /etc/group, /etc/shadow, and no other sensitive files

have anything but the bare essentials within them.

• Do all bootstrapping via a definition file instead of manipulating the containers by hand

(with the − − writable options), this ensures greatest possibility of reproducibility and miti-

gates the “black box effect”.

Demonstrated validity

The utility of Singularity, and its demonstrated need and value to the scientific community, is

best demonstrated by its speed of adoption. As of the time of this publication, Singularity is

available on 36 research clusters, including national labs, companies, and major universities

across several countries (Table 4). Validation of the software comes from the strongest test that

is possible—centers across the nation with security experts have reviewed it and decided to

install it for their users. For example, as of February 27th, already 1 million jobs using Singular-

ity containers have been run on the Open Science Grid, with a projection that in several

months, a milestone of 1 million per day [52].

The administrators of many of these major centers have chosen to provide Singularity to

their researchers over the other options described earlier, and it is notable that this list repre-

sents reported usage, which is likely a subset of actual usage. Additionally, Singularity is pro-

viding containers for enterprise and production level environments at the San Diego

Supercomputing Center [53], the Texas Advanced Computing Center [54], and the GSI Helm-

holtz Center for Heavy Ion Research [55]. Singularity has been featured on several well known

news outlets in the HPC community [56–58], won an Editor’s Choice Award from HPCWire

at the Supercomputing 2016 conference [59], and despite only being available for about six

months, already has researchers publishing analyses using it [23].

Future enhancements

Under development is a registry for images, Singularity Hub, which will provide users with an

online web interface to connect Github repositories with the application and automatically

build images in the cloud on pushes to the repositories. The images will then be available

programmatically for running or other use on a local machine, cluster environment, or cloud

resource. The availability of this resource will mean that an entire workflow, from image gen-

eration to running at scale, is possible without needing any environment with root privileges.

Although Singularity Hub is still in the final stages of development, its core functionality is fin-

ished, and an additional URI is provided as an endpoint to Singularity Hub:

shub:// Singularity uses the Singularity Hub API to download the image locally.

Singularity Hub is the connector that will make running Singularity containers across differ-

ent local, HPC, and cloud environments automatic, and easy. Singularity Hub will allow for a

common method to drive a thorough, computational review of Singularity’s operations. Thus,

while this paper is scoped to be a descriptive summary to officially announce and describe the

software, the reader should expect this comparison with the release of Singularity Hub.

Conclusion

We have detailed the rationale for, software, and usage for Singularity containers, and invite

the reader to visit http://singularity.lbl.gov for installation instructions across specific plat-

forms, administrative documentation, complete command line usage, along with the latest

information, documentation, support, and news.
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Contribution

Contributions are encouraged from users alike to improve the Singularity software. Specifi-

cally, desired features would be addition of more plugins for cluster or environment specific

Table 4. Singularity reported usage.

Site or Organization System Name Size (cores) Purpose of the System

CSIRO bragg-gpu 2048 broad base scientific

Genentech, Inc. research

Georgia State University Orion 362 research

GSI Helmholtz Center Greencube 300,000 heavy ion physics

Holland Computing Center Crane and Tusker 14,000 campus cluster

HPC-UGent golett 2500 general scientific research

LBNL** Lawrencium 30,000 general scientific research

Lunarc Aurora 360 Research

McGill HPC Centre guillimin 22300 Compute Canada cluster

Microway Microway Research Cluster 192 ccientific benchmarking

MIT openmind 1,176 neuroscience

NIH*** Biowulf 54,000 general biomedical research

Purdue University Rice 11520 campus HPC resource

Purdue University Conte 78880 campus HPC resource

Purdue University Snyder 2220 campus HPC resource

Purdue University Hammer 3960 campus HPC resource

Purdue University Carter 10560 campus HPC resource

R Systems NA, Inc. Oak1 1024 shared resource

R Systems NA, Inc. Oak2 2048 shared resource

R Systems NA, Inc. HOU1 5376 shared resource

Rutgers University sirius 32 scientific SMP machine

SDSC* Gordon 16384 cluster for XSEDE

SDSC* Comet 47776 cluster for XSEDE

Stanford University sherlock 12764 compute for Stanford

Stanford University scg4 3920 genomics at Stanford

TACC**** Stampede 102400 NSF key resource, all fields

UFIT HiPerGator 51,000 research computing cluster

Ulm University, Germany JUSTUS 550 computational chemistry

UNF Stark 64 fMRI analysis of the brain

University of Arizona Ocelote 10000 general research

University of Arizona ElGato 2300 GPU cluster

UNC Berkeley Savio 7820 HPC for research

University of Chicago midway.rcc.uchicago.edu 24196 university cluster

University of Leeds MARC1 1236 bioinformatics, analytics

University of Manitoba Grex 3840 generalHPC cluster

WU in St. Louis 2000 general cluster

HPC Clusters Using Singularity: At the time of this writing, this table shows the site or organization name, the system name, the number of cores, and the

purpose for 36 clusters that have (reported) Singularity installed.

*San Diego Supercomputer Center

**Lawrence Berkeley National Laboratory

***National Institute of Health

****Texas Advanced Computing Center

https://doi.org/10.1371/journal.pone.0177459.t004
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needs, further integration with other container software, and continued feedback from users

and developers alike. We would like to thank the large group of users, and developers for all

contributions to the software.
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