
Exploring container
image distribution with

casync

Experiments with the Content-Addressable Data
Synchronization Tool

Hi, I'm Alban

Alban Crequy
CTO @ Kinvolk

alban@kinvolk.io

★ Existing container image distribution mechanisms
★ Problem statement: wasting network bandwidth
★ Exploring two solutions: bittorrent and casync

Plan

★ Support for the Docker registry (for Docker images)
○ https://github.com/docker/distribution

★ Support for ACI Discovery (for ACI images)
○ https://github.com/appc/spec/blob/master/spec/discovery.md

Container image distribution with

https://github.com/docker/distribution
https://github.com/appc/spec/blob/master/spec/discovery.md

Docker registry

Docker registry

rkt fetch docker://img:latest

Kubernetes node

fetching
all layers

uses the docker2aci library internally

ACI Discovery

rkt fetch coreos.com/etcd:v3.1.11Kubernetes node

https://coreos.com/
<meta name="ac-discovery"
 content="coreos.com/etcd
 https://github.com/coreos/etcd
 /releases/download/{version}
 /etcd-{version}-{os}-{arch}.{ext}">

https://github.com/coreos/etcd/releases/d…

download HTML page
& look at the <meta/>

download
the .aci file (tarball)

over HTTP

the manifest
might contain

other parent images

https://coreos.com/
https://github.com//coreos/etcd/releases/d%E2%80%A6

Wasting network bandwidth

Docker Hub

ubuntu:zesty-20171114
ubuntu:zesty-20171117
...

Kubernetes cluster 1 Kubernetes cluster 2 Kubernetes cluster 3

★ quayctl
○ https://quay.io/

○ quayctl https://coreos.com/blog/torrent-pulls

★ rkt - previous discussions
○ https://github.com/rkt/rkt/issues/405

○ https://github.com/rkt/rkt/issues/798

○ https://github.com/rkt/rkt/issues/1751

Previous work with Bittorrent

https://quay.io/
https://coreos.com/blog/torrent-pulls
https://github.com/rkt/rkt/issues/405
https://github.com/rkt/rkt/issues/798
https://github.com/rkt/rkt/issues/1751

★ Only download necessary changes between versions

Motivation for casync

Image v1

Image v2

★ Only download necessary changes between versions

★ Chunks of variable size
○ Chunk size based on content

Problem when adding/removing bytes

Image v1

Image v2

★ https://github.com/systemd/casync
★ Steps: building the index file & chunk store

○ Serialization

○ Split the serialization into chunks

○ Hash each chunks

○ Compress & store in the chunk store

★ Extracting:
○ Download the index file
○ Download the missing chunks
○ Reverse steps

How does casync work?

https://github.com/systemd/casync

casync integration with

HTTP server

rkt fetch img:v1

rkt fetch img:v2

Local
chunk
store

Kubernetes node

check
the local cache

download
missing chunks

★ Status: just an experiment for now

http://kinvolk.io/default.castr/e4a2/${chunk_hash}.cacnk

★ rkt branch
○ https://github.com/kinvolk/rkt/tree/alban/casync

casync integration with

<meta name="ac-discovery"
 content="kinvolk.io/ubuntu http://kinvolk.io/rootfs.caidx">

https://github.com/kinvolk/rkt/tree/alban/casync

TODO

★ Try the desync library (in Go)
○ https://github.com/folbricht/desync

★ Cache GC
★ FUSE: start the container sooner and download on-demand

https://github.com/folbricht/desync

Experimenting

Does this actually
save network bandwidth?

https://github.com/kinvolk/casync-measurements

Possible causes:
- Two big binary files
- Compression on chunks

Conclusion

● We can save significant network bandwidth on some images but not all
● It would require more work

