
Combining CVMFS, Nix, Lmod, and
EasyBuild at Compute Canada

Bart Oldeman, McGill HPC, Calcul Québec, Compute Canada

Motivation
1. New bigger national systems replacing many smaller local

clusters, with common software stack, scheduler (Slurm),
and so on, administered by national teams.
Many sites will have no physical cluster but still support.

2. (coming) online:
a. Arbutus: cloud system, University of Victoria, BC
b. Cedar: https://docs.computecanada.ca/wiki/Cedar

Simon Fraser University, Vancouver, BC
c. Graham: https://docs.computecanada.ca/wiki/Graham

University of Waterloo, ON
d. Niagara: https://docs.computecanada.ca/wiki/Niagara

University of Toronto, ON
e. Béluga: Calcul Québec, RFP, heterogeneous system

with ~40,000 cores and GPUs, Sep. 2018.

https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Graham
https://docs.computecanada.ca/wiki/Graham

Online now and coming

Cedar
● 900 nodes, most (690) with (2) 16-core Broadwell sockets

at 2.1Ghz, and 128GB memory, others more
● 146 of those nodes have 4 GPUs each (584 P100s)
● 27,696 total cores, ~14PB storage
● Extension:~625 nodes with 48 Skylake cores,192GB/node
Graham
● 1100 nodes, most (1024) with (2) 16-core Broadwell

sockets at 2.1Ghz, and 128GB memory, others more
● 160 of those nodes have 2 GPUs each (320 P100s)
● 35,520 total cores, ~13PB storage
Niagara:
● 1500 nodes with 40 Skylake cores,192GB/node
● 60,000 total cores, ~10PB storage

Guiding principle
Users should be presented with an interface that is as
consistent and as easy to use as possible across all future
CC sites. It should also offer optimal performance.
All new CC sites
1. Need a distribution mechanism

a. CVMFS
Consistency
2. Independent of the OS (Ubuntu, CentOS, Fedora, etc.)

a. Nix
3. Automated installation (humans are not so consistent)

a. EasyBuild
Easy to use
4. Needs a module interface that scale well

a. Lmod with a hierarchical structure

Background
Most HPC clusters use enterprise Linux distributions for good
reasons (vendor support for network, parallel filesystems, etc)

CentOS/RHEL 6
Linux kernel 2.6.32, GCC 4.4.7, Glibc 2.12, Python 2.6.6
CentOS/RHEL 7
Linux kernel 3.10, GCC 4.8.5, Glibc 2.17, Python 2.7.5
(with many backports of course)
compare:
Fedora 27
Linux kernel 4.13, GCC 7.2, Glibc 2.26, Python 2.7.14 & 3.6.2

Background
But users on those clusters want shiny new things and install
them as if it were a Linux desktop (following documentation):
$ sudo apt-get install python2.7-dev
We trust you have received the usual lecture from the local
System Administrator. It usually boils down to these three
things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudo] password for jsmith:
sudo: apt-get: command not found
$ sudo yum install python27-devel
[sudo] password for jsmith:
Sorry, try again.
[sudo] password for jsmith:
Sorry, user jsmith is not allowed to execute
'/usr/bin/yum install gcc-7.2' as root on lg-1r17-n01.

Solution: modules
Create a “modulefile” named “python/2.7.9” somewhere
in $MODULEPATH
#%Module1.0###########################
proc ModulesHelp { } {
 puts stderr "\tAdds Python 2.7.9 to your environment"
}
module-whatis "Adds Python 2.7 to your environment"
set root /software/CentOS-6/tools/python-2.7.9
prepend-path MANPATH $root/share/man
prepend-path PATH $root/bin
prepend-path LD_LIBRARY_PATH $root/lib
prepend-path CPATH $root/include

Users do “module load python/2.7.9”, which modifies their
environment. “module unload python” restores it then.

Solution: modules
How were modulefiles created:
by hand of course, same as
how the software was
installed.
How to not become invaluable:
https://easybuilders.github.io/easybuild/

http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html

http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html

https://easybuilders.github.io/easybuild/
http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html
http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html

Software: design overview

Nix layer: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc.
module nixpkgs/16.09 => $EBROOTNIXPKGS=
/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/16.09

Easybuild-generated modules around Nix profiles:
GCC, Perl, Qt, Eclipse, Python no longer
/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/[a-z]*

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client
libraries (all dependencies of OpenMPI). In Nix layer, but can be
overridden using PATH & LD_LIBRARY_PATH.

OS kernel, daemons, drivers, libcuda, anything privileged (e.g. the sudo
command): always local.

Easybuild layer: modules for Intel, PGI, OpenMPI, MKL, high-level
applications. Multiple architectures (sse3, avx, avx2)
/cvmfs/soft.computecanada.ca/easybuild/{modules,software}/2017

Tools used : CVMFS

● File system used to distribute software, originally used
for High Energy Physics (HEP) software from CERN

● https://cernvm.cern.ch/portal/filesystem
● Distribution layer

○ Redundant
○ Multiple cache layers (Stratum-0, Stratum-1, local

squid)
○ Atomic deployment
○ Transparent pull model

● Deploys once => available everywhere
● Carries whatever files we put on it
● Clients mount file system read-only via a FUSE (File

System in Userspace) module

https://cernvm.cern.ch/portal/filesystem

Tools used : CVMFS

Tools used : CVMFS

● Configuring the client
○ Needs public key

● Three main repositories:
○ /cvmfs/soft.computecanada.ca
○ /cvmfs/soft-dev.computecanada.ca
○ /cvmfs/restricted.computecanada.ca

■ commercial software, with group permissions
● Current clients:

○ cvmfs-client.computecanada.ca
○ cvmfs-client-dev.computecanada.ca
○ most cluster nodes within Compute Canada

Tools used : Nix

● Abstraction layer between the OS and the scientific
software stack

● Prevents:
○ Ooops, this software requires an updated glibc
○ Ooops, libX is not installed on this cluster

● Carries all* the dependencies of the scientific software
stack

● Ensures all paths are rpath’ed (technically: runpath, so
LD_LIBRARY_PATH takes precedence)

● Hundreds of packages supported out of the box
● Can symlink any combination of packages into any

multi-generational profile. We use a main “16.09” profile
tracking the September 2016 Nixpkgs release

* Exceptions: drivers, kernel modules, etc.

Tools used : EasyBuild

● Automates installation of (mostly) scientifically oriented
software and generation of modulefiles.

● Lua based module system
● Makes it easy to setup a software module hierarchy

○ e.g. modules that depend on MPI implementation X
are only visible if you first “modue load X”.

● https://lmod.readthedocs.io/en/latest/

Tools used : Lmod

https://lmod.readthedocs.io/en/latest/

Nix and EasyBuild, conceptually

● Builds are performed through “recipes”
● Recipes are stored on Git. Compute Canada has its

own fork of the repos :
○ Nixpkgs
○ Easybuild:

■ framework (high level Python scripts)
■ easyblocks

● is it configure; make; make install, cmake,
custom? (Python scripts)

■ easyconfigs
● what are the configure parameters?

(configuration files)

https://github.com/ComputeCanada/nixpkgs
https://github.com/ComputeCanada/easybuild-framework
https://github.com/ComputeCanada/easybuild-easyblocks
https://github.com/ComputeCanada/easybuild-easyconfigs

Installing software, step by step
1. Figure out if it should be in Nix or EasyBuild

○ Is the software performance critical or depends on MPI?
■ Yes => EasyBuild
■ Multiple versions needed via modules ?

● Yes => EasyBuild, or EasyBuild wrapping Nix,
using the Nix easyblock

● No => Nix
2. Install on build-node.computecanada.ca with the

appropriate package manager (nix-env or eb)
3. Test on build-node.computecanada.ca
4. Deploy on CVMFS dev repository
5. Test on cvmfs-client-dev.computecanada.ca or with proot
6. Deploy on CVMFS production repository
7. Final testing on the production cluster

Software that we put in Nix, not EB
Bison,CMake,flex,ncurses,libreadline,bzip2,zlib,binutils,M4,
Autoconf,Automake,libtool,Autotools,Szip,libxml2,sparsehash,
SQLite,cURL,Doxygen,expat,Mesa,libGLU,SWIG,PCRE,
libjpeg-turbo,LibTIFF,libpng,XZ,ant,gettext,X11,pkg-config,
LLVM,libdrm,gperf,FLTK,fontconfig,freetype,GMP,GL2PS,gnuplot,G
raphicsMagick,MPFR,libmatheval,Tcl,Tk,CFITSIO,libX11,libXft,li
bXpm,libXext,makedepend,cairo,libiconv,FFmpeg,GLib,FLANN

● mostly things that are dependencies of other modules
● EasyBuild provides recipes for those because the

RHEL/CentOS development RPMs were too old
● most of these are of little scientific interest (some sites hide

them: the module is automatically loaded but not visible
when the user lists all modules using “module avail”).

Python wheels
● Most Python modules are not installed as (Lmod) modules.

They are instead provided as binary wheels, stored on the
Compute Canada systems under
/cvmfs/soft.computecanada.ca/custom/python/wheelhouse/
○ Examples: Tensorflow, scikit-learn, etc, etc.

● The user typically creates a virtual environment and “pip
install”s the desired package
○ pip will look in our wheelhouse first before attempting to

download it from the internet
○ this gives us properly optimized packages

Some statistics

What type of software is it ?

Type of software Number of modules (S/V)

Artificial intelligence 5

Bioinformatics 145

Chemistry 44

Geo/Earth 18

Input/output 16

Mathematics tools/software 55

MPI libraries 7

Physics software 28

Various tools 93

Visualisation 23

Module usage dashboard

https://grafana.computecanada.ca/dashboard/db/systems-lmod-stats

https://grafana.computecanada.ca/dashboard/db/systems-lmod-stats

Software challenges
Non-standard prefix
$EBROOTNIXPKGS=$NIXUSER_PROFILE=
/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/16.09
instead of /usr.
Mostly transparent to users but occasional (ab)use of LD_LIBRARY_PATH:
1. By users (mostly by accident in old .bashrc files)
2. By binary-only software and their scripts (e.g. ANSYS)
3. setrpaths.sh script patches (patchelf) binaries so they can work with

this prefix.
4. Do not set LD_LIBRARY_PATH to either /usr/lib64 or

$EBROOTNIXPKGS/lib. Either setting will burn you.
So far mostly resolved; if all else fails, (e.g. user wants to compile GCC)
use module --force purge. We may be able to make the stack more
immune in future, e.g. using old-style RPATH, Singularity if necessary.

Challenge: there is more than /usr!
Loading manually written nixpkgs/16.09 module by default, including
local root = "/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/16.09"
setenv("NIXUSER_PROFILE", root)
prepend_path("PATH", "/cvmfs/soft.computecanada.ca/custom/bin")
prepend_path("PATH", pathJoin(root, "sbin"))
prepend_path("PATH", pathJoin(root, "bin"))
prepend_path("LIBRARY_PATH", pathJoin(root, "lib"))
prepend_path("C_INCLUDE_PATH", pathJoin(root, "include")) -- NOT CPATH!!
prepend_path("CPLUS_INCLUDE_PATH", pathJoin(root, "include"))
prepend_path("MANPATH", pathJoin(root, "share/man"))
prepend_path("ACLOCAL_PATH", pathJoin(root, "share/aclocal"))
prepend_path("PKG_CONFIG_PATH", pathJoin(root, "lib/pkgconfig"))
setenv("FONTCONFIG_FILE", pathJoin(root, "etc/fonts/fonts.conf"))
prepend_path("CMAKE_PREFIX_PATH", root)
prepend_path("PYTHONPATH","/cvmfs/soft.computecanada.ca/custom/python/site-packa
ges")
setenv("PERL5OPT", "-I" .. pathJoin(root, "lib/perl5") .. " -I" ..
pathJoin(root, "lib/perl5/site_perl"))
prepend_path("PERL5LIB", pathJoin(root, "lib/perl5/site_perl"))
prepend_path("PERL5LIB", pathJoin(root, "lib/perl5"))
setenv("TZDIR", pathJoin(root,"share/zoneinfo"))
setenv("SSL_CERT_FILE", "/etc/pki/tls/certs/ca-bundle.crt")
setenv("CURL_CA_BUNDLE", "/etc/pki/tls/certs/ca-bundle.crt")
setenv("LESSOPEN", "|" .. pathJoin(root, "bin/lesspipe.sh %s"))
setenv("LOCALE_ARCHIVE", pathJoin(root, "lib/locale/locale-archive"))

Catches most searches for EasyBuilds/Best not to have any -devel RPMs installed.

Challenge: nix store leaks
Nix provides a symlink forest:
.../nix/var/nix/profiles/16.09 ->

.../nix/var/nix/profiles/16.09-523-link ->

.../nix/store/cj3f56cgpms7m9fjnbl9vjkmap5fzgsi-user-environment

.../nix/store/cj3f56cgpms7m9fjnbl9vjkmap5fzgsi-user-environment/bin/ls ->

.../nix/store/cn222k5axppndcfbqlckj57939d9h0h9-coreutils-8.25/bin/ls

We wrap ld so all rpaths in EB/user code point to
.../nix/var/nix/profiles/16.09/lib. This way Nix components can be
upgraded, which changes the store hashes, and allows garbage
collect / selective copying.
Sometimes that did not work:
● Python virtualenv: copies the python binary into the virtualenv with store

rpaths embedded.
● Qmake: qmake -query QT_INSTALL_BINS

 /cvmfs/soft.computecanada.ca/nix/store/
 vxwrgncd38s5prw8qx99rnsfz6lgph52-qtbase-5.6.1-1/bin

Credits

● Thanks to others in Compute Canada:
○ RSNT (Research Support National Team):

■ Led by Maxime Boissonneault, responsible for
setting up this software stack (+ documentation +
ticketing system).

○ Nix experts on the sideline (Tyson Whitehead,
Servilio Afre Puentes).

○ Kuang Chung Chen, who started combining CVMFS,
Nix and EasyBuild, after hitting the limits of Linux
From Scratch.

● And thanks to EasyBuild: UGent, JSC, Robert Schmidt,
...

