
© Tresorit - Confidential

Graph-based 
analysis of JavaScript 
repositories
Adam Lippai
Web team lead of Tresorit, 
the encrypted cloud storage company



ingraph
Graph database engine for 
incremental evaluation of 
openCypher queries

https://github.com/szarnyasg

Similar to Neo4j + incremental 
evaluation

2



openCypher – pattern matching

3

A B

C

D

user friend foaf

A B C

A B D



Incremental evaluation

1. A v B v C

2. A v B v C v D

(In reality it’s more complex, the actual algorithm is 
called RETE and it’s based on radix trees)

4



5



6



7



Why is static analysis important?

• QA is expensive
• Money: Get the bugs fixed in the earliest stage, cut the 

administration and release overhead

• Developer experience: less round-trips -> better focus on one task

• Learning by example 

• Insights for project and code health

• It scales across companies
• Patterns that lead to bugs can be shared

• Find bugs in your code already found by Microsoft, Facebook, Google

8



What does the new database 
enable?
• Granularity & scope

• Developer empowerment

• Maintainability

9



Granularity – now

• Linters work within files

• TypeScript Compiler and other IDE tools create 
“interfaces of the imported files” for specific use-
cases (e.g. type inference)

10



Granularity – future

• Complete project
• Every JS file, together

• Multiple projects
• Every project – think npm install or npm update

• Over time, over Git branches
• A project doesn’t have 10000 states, but 1 initial state 

and 9999 changes

11



Developer empowerment – now 

• CTRL + F

• Find class/method/function in IDE

• Class maps for OOP

• Scaffolded Babylon, Acorn or TS compiler script

• Generated + searchable docs based on JSDoc

12



Developer empowerment – future

• Where is this code used?

• What parts of the code can modify this variable?

• What side effects can this call or assignment have?

• Did I change my libs API? Is it a breaking change?

• How to structure my code?

• Where to cut modules and bundles?

-> ingraph enables such queries

13



Maintainability – now

• We have unified data structures (similar AST formats)

• De facto standard language: XPath

• Unique visitor patterns

• Hard testability of plugin system
• Plugins mutate state

• Problem of “multi-pass” analysis

14



Maintainability – future 

• Adding abstraction without losing information

• Common declarative query language – openCypher

15

MATCH (bi:BindingIdentifier)

<-[:binding]-()-->

(be:BinaryExpression)

-[:right]->(right:Expression)

WHERE be.operator = 'Div'

AND right.value = 0.0

RETURN bi



var foo = 1 / 0;

16

VariableDeclarator

BindingIdentifier
name = `foo`

BinaryExpression
operator = `Div`

Expression
value = 1.0

Expression
value = 0.0

bi be

right

MATCH (bi:BindingIdentifier)

<-[:binding]-()-->

(be:BinaryExpression)

-[:right]->(right:Expression)

WHERE be.operator = 'Div'

AND right.value = 0.0

RETURN bi



Graphs are powerful

• Existing optimal algorithms and good heuristics 
instead of „not that bad code”

• Incremental query caching is possible – eg. RETE or 
TREAT

17



Use cases for incremental pattern 
matching
• Type propagation and checking (type inference)

• Dead code elimination

• (Asynchronous) code flow checks – can the program 
reach a specified state, can a value be undefined etc.

• Fuzzing like behavior, e.g. integration test generation

• Code vectorization -> AI

18



The right tool is

• Declarative
• what instead of how

• Stateful and incremental
• cache the existing knowledge

• Instant
• inside your IDE

19



Codemodel-rifle

20

1. Parsing JS using Shift Java

2. Transforming

3. Loading the model into Neo4j or ingraph

4. Executing queries on top of it

• https://github.com/steindani

• https://github.com/luczsoma



Thank you!

21


