The CephFS Gateways
Samba and NFS-Ganesha
Agenda

• Why
 – Exporting CephFS over Samba and NFS-Ganesha

• What
 – Architecture & Features
 • Samba
 • NFS-Ganesha

• How
 – Interoperability of Samba and NFS-Ganesha
Ceph Architecture

Image Source: http://docs.ceph.com/docs/giant/architecture/
CephFS Clients: Samba and NFS-Ganesha
CephFS Clients: Samba and NFS-Ganesha
NFS-Ganesha
NFS-Ganesha

- Open source
- User space NFS server
- Supports multiple Filesystem Backends:
 - CephFS
 - RGW (RADOS Gateway)
 - Gluster
 - GPFS
NFS-Ganesha

- Open source
- User space NFS server
- Supports multiple FilSystem Backends:
 - CephFS
 - RGW (RADOS Gateway)
 - Gluster
 - GPFS
NFS-Ganesha and CephFS

 Kernel CephFS Client

 RADOS Cluster

 NFS-Mount Point

 NFS-Ganesha

 libcephfs
NFS-Ganesha Architecture

- Network Channel
- RPC Dispatcher
- Duplicate Request Layer
- RPCSEC_GSS
- NFSv3, NFSv4
- FileSystem Abstraction Layer (FSAL)
- MDCACHE
- CephFS
- Admin DBus
- Log
NFS-Ganesha Modular Architecture

- **RPC layer:**
 - uses libntirpc

- **Filesystem Abstraction layer (FSAL):**
 - Provides API for exported namespace

- **Metadata cache (MDCACHE):**
 - Chunked dirent cache (version 2.6)

- **Dbus Interface**
 - System management and communication

- **Log Management**
 - Support for internal logging
NFS-Ganesha key features

- Single nfs-ganesha instance can support:
 - Multiple exports
 - Multiple filesystem backend
 - Multiple Protocols
- RPCSEC_GSS with krb5 authentication
- Dynamically export/unexport entries using DBus
NFS-Ganesha CephFS features

- Cephx authorization
- Read delegations
- Export subdirectories
 - Load balancing
NFS-Ganesha High Availability

• Problem: Single NFS-Ganesha server
 – Single point of failure
 – Bottleneck
 – Cannot scale with backend filesystem.

• Solution: Clustering
 – High availability
 – Load balancing
NFS-Ganesha HA: Active-Passive

```
mount -t nfs <Virtual_IP> /mnt
```
NFS-Ganesha HA: Active-Passive

```
mount -t nfs <Virtual_IP> /mnt
```
NFS-Ganesha HA: Active-Active

mount -t nfs <Virtual_IP> /mnt
Samba
Samba

- File and print sharing
 - SMB / CIFS, SMB2 and SMB3+ dialects
- Authentication
 - NTLMv2 and Kerberos
- Identity mapping
 - Windows SIDs to uids and gids
 - Active Directory domain member or domain controller
Protocol

- SMB / CIFS
 - Legacy dialect
 - Hundreds of commands and subcommands
 - UNIX extensions
- SMB2
 - Clean break from old dialects
 - Modern, simplified protocol with improved performance
Protocol (continued)

- SMB2.1 → SMB3.1.1
 - Most recent protocol revisions
 - Lease improvements
 - RDMA extensions
 - Multichannel
 - Witness Protocol
 - End-to-end encryption
Clients

- Windows
 - Reference client
 - Protocol specification publisher
- macOS
 - AFP replaced by SMB2 as default for Mavericks (2013)
- Linux
 - CIFS kernel module and Samba smbclient
Clustered Trivial Database (CTDB)

- Samba persistent state stored in TDB key-value store
- Share some of this state across multiple nodes
 - Cluster consistent database
 - Reliable messaging
- HA features bolted on
 - Monitoring and failover
CTDB

- Nodes participate in election of recovery master
- Recovery master monitors state of cluster
- Performs database recovery if necessary
 - Cluster-wide mutex used to prevent split brain
- “Tickle” clients on IP failover
Samba Gateway

Samba

Ceph VFS module

TDB

libcephfs

RADOS CLUSTER

data

metadata

10
01

M
M
Samba Ceph Integration

• CephFS module for Samba: *vfs_ceph*
 – Maps SMB file and directory I/O to libcephfs API calls
• Static cephx credentials
 – Regardless of Samba authenticated user
• POSIX ACLs
Samba Ceph Integration

• Ceph RADOS clustered mutex helper for CTDB
• Ceph librados service integration (*coming soon*)
Testing

- Samba smbtorture
- cifs.ko fstests
- Interoperability
 - MacOS, Windows, Hyper-V, etc.
Performance
Benchmark Setup

- Ceph setup on 8 nodes
 - 5 OSD nodes – 24 cores – 128 GB RAM
 - 3 MON/MDS nodes – 24 cores – 128 GB RAM
 - 6 OSD daemons per node – Bluestore – SSD/NVME journals
- 10 client nodes
 - 16 cores – 16 GB RAM
- Network interconnect
 - Public network 10Gbit/s
 - Cluster network 100Gbit/s
FIO Job

• Read/write data to \#SIZE file for \#TIME
• 10 client nodes. On each client node, jobs are executed
• A single job is of type:
 • \{ number_of_workers\}rw_\{ block_size \}_\{ op \}, where:
 • Number of worker threads:
 • 1, 4, 8, 16
 • Each worker thread creates a file of 1g size
 • Block Sizes:
 • 4k, 64k, 1m, 4m, 8m
 • Op:
 • rw
Performance: NFS-Ganesha vs CephFS

- Benchmarking was performed for:
 - NFS-Ganesha v2.5.2
 - Ceph Version 12.2.1
 - Single NFS-Ganesha server
 - NFS version 4.0
 - Read/Write data 1GB file for 2 mins
NFS-Ganesha vs CephFS Kernel client: Aggregated B/W over 10 clients
NFS-Ganesha vs CephFS Kernel client:
Read/Write ratio B/W comparison (in %)
Observations

- For single thread, nfs b/w is 80% of cephfs b/w.
- Performance degrades as no. of threads increase
- Single nfs-ganesha server is bottleneck.
NFS-Ganesha vs CephFS: 16 threads latency
Performance: Samba vs CephFS

- Preliminary results!
- Environment:
 - Ceph Version 12.2.2
 - Samba 4.6.9
 - Three Samba gateways
 - *vfs_ceph* with oplocks / leases disabled
 - Non-overlapping share paths
 - Linux cifs.ko client
 - 4.4 kernel with many backports
 - SMB 3.0 mount
Challenges and Future
Challenges

• Cross-protocol client support
 - Shared (NFS, CephFS) ACL model
 • RichACLs or POSIX draft ACLs
 - Coherent client caching
 • Map leases to CephFS FILE and AUTH capabilities

• Unified authentication and user mapping
 - Use Kerberos / AD for Samba gateway and cephx
Challenges

- libcephfs asynchronous I/O

- Multichannel support
 - Experimental in upstream Samba
 - Not integrated with CTDB

- Automated deployment
Challenges

• Witness protocol
 – Continuous availability of SMB shares
 – Advertise Samba cluster state to clients
 – Transparent client failover
 – Load balancing
Samba: Future

- Ceph backed key-value store for Samba
- Replace or modify CTDB
 - Rocksdb?
 - Samba database API demanding
 - Multiple processes and writers
 - Record locking and transactions
NFS-Ganesha: Future

- clustering without Linux HA
- NFS v4.1 support
- Librados service integration
References

- Samba: https://samba.org/
- CTDB: https://ctdb.samba.org/
- Witness Protocol:
- Samba Multichannel Blocker Bug: https://bugzilla.samba.org/show_bug.cgi?id=11897
- CephFS cache flags:
 https://jtlayton.wordpress.com/2016/09/01/cephfs-and-the-nfsv4-change-attribute/
Join Us at www.opensuse.org
License
This slide deck is licensed under the Creative Commons Attribution-ShareAlike 4.0 International license. It can be shared and adapted for any purpose (even commercially) as long as Attribution is given and any derivative work is distributed under the same license.

Details can be found at https://creativecommons.org/licenses/by-sa/4.0/

General Disclaimer
This document is not to be construed as a promise by any participating organisation to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. openSUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for openSUSE products remains at the sole discretion of openSUSE. Further, openSUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All openSUSE marks referenced in this presentation are trademarks or registered trademarks of SUSE LLC, in the United States and other countries. All third-party trademarks are the property of their respective owners.

Credits
Template
Richard Brown
rbrown@opensuse.org

Design & Inspiration
openSUSE Design Team
http://opensuse.github.io/branding-guidelines/