How to backup Ceph at scale

FOSDEM, Brussels, 2018.02.04
About me

Bartłomiej Święcki
OVH
Wrocław, PL

Current job:
More Ceph awesomeness
Speedlight Ceph intro

- Open-source
- Network storage
- Scalable
- Reliable
- Self-healing
- Fast
Ceph @ OVH

- Almost 40 PB of raw HDD storage
- 150 clusters
- Mostly RBD images
Why we need Ceph backup?

- Protection against software bugs
 - Didn’t see that yet but better safe than sorry
- One more protection against disaster
 - Probability spikes at scale (i.e. HDD failures)
 - XFS (used by Ceph) can easily corrupt during power failures
- Human mistakes – those always happen
 - Ops accidentally removing data
 - Clients removing / corrupting data by mistake
- Geographically separated backups
 - Not easily available in Ceph (yet)
Resource estimation and planning
Software selection

- Compression
- Deduplication
- Encryption
- Speed
- Work with data streams
- Support for OpenStack SWIFT
Software selection

- No perfect match at that time
- Selected duplicity – already used at OVH
- Promising alternatives (i.e. Restic)
Storage, network

- Assumed compression and deduplication – 30% of raw data
- Use existing OVH services – PCA (swift)
- Dynamically scale computing resources with OVH Cloud
Impact on Ceph infrastructure

20PB raw data: 6.6 PB of data without replicas

For daily backup:

• ~281 GB / h = ~ 4.7 GB / min = ~ 0.078 GB / sec
• 0.63 Gb/sec constant traffic
Backup architecture – idea

- CEPH Cluster
- RBD Image (snapshot)
- Backup VM
 - Docker Container
 - Duplicity
- PCA Swift
Implementation challenges
Duplicity quirks

- Can backup files only – export rbd image locally need temporary storage
- Files should not be larger than few MB due to librsync limits – rbd image split into files of up to 256MB size
- Can not backup large images (large >= 500GB): not enough local storage, timeouts, interruptions – split image into 25GB chunks and backup separately
Duplicity + SWIFT overview

- CEPH Cluster
- RBD Image (snapshot)
- Chunk 25GB
- Docker Container
- Backup VM
- Duplicity
- Local SSD
- PCA Swift
- 256 MB (repeated 4 times)
FUSE to the rescue

- Expose part of image through FUSE
- Can easily work on part of the image
- Can expose image as list of smaller files
- No need for local storage, all can be done in memory
- Restore a bit more problematic but possible
Prod impact

- Throttle number of simultaneous backups
 - Global limit imposed by our compute resources
 - Limits per cluster
 - Limits per backup VM
 - No simultaneous backups of one RBD image

- Used locks and semaphores stored in zookeeper
Scaling issues

- Zookeeper does not work well with frequently changing data
- Lots of issues with celery workers – memory leaks, ulimit, ping timeouts, rare bugs
- Issues with docker – orphaned network interfaces, local storage not removed
- Duplicity requires lots of CPU to restore backup (restore 4x slower than backup)
Hot / cold backup strategy
Backup to Ceph

- Separate Ceph cluster with copy of data
- Export / import diff a huge advantage
- Can use backup cluster as a hot-swap replacement
- Reuse previous backup architecture
- Can backup spare cluster as before – cold backup
Ceph on Ceph overview

Source CEPH Cluster

RBD image (snapshot)

Chunk 25GB

Backup CEPH Cluster

RBD image

Backup Container
Advantages

- Can backup large cluster in less than 24h
- Greatly reduced compute power needed
- Can recover in minutes, not hours / days
OVH Ceph Backups - numbers
Global info:

34 Clusters with active backup

~9000 backups finished daily

~0.6 PB of data exported daily
Large cluster case study:

WEEKLY BACKUPS

- **Weekly backups**
 - **Duplicity Swift**: 3350
 - **Ceph on Ceph**: 4776
 - **Ceph on Ceph with diff**: 33432
Large cluster case study:

Backup instance age

Ceph To Ceph

Ceph To Ceph with diffs

Duplicity Swift (OVH PCA)
Large cluster case study:

Images to backup (4700)

Duplicity Swift (OVH PCA)

Ceph To Ceph

Ceph To Ceph with diffs
To sum up...

- Backups at scale definitely possible...
- ... but better start with Ceph-on-Ceph
- You can get down to 24h backup window on highly utilized clusters
- Alternative storage to Ceph can give even better protection but will be slow
- Ceph-on-Ceph as a first line, alternative storage as a second line backup
Image sources

http://alphastockimages.com/

https://www.flickr.com/photos/soldiersmediacenter/4473414070

https://commons.wikimedia.org/wiki/File:Hot_Cold_mug.jpg
Questions?

bartlomiej.swiecki@corp.ovh.com