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What is OpenStack Swift?
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● Object Storage
● Flat namespace
● Unstructured data
● Scalable, durable, reliable
● In production for ~8 years

https://video.fosdem.org/2018/, Room H.2213 

https://video.fosdem.org/2018/
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Swift uses a simple REST API based on GET, PUT, HEAD, POST requests
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REST API
Swift uses a simple REST API based on GET, PUT, HEAD, POST requests

# List objects in a (public readable) container
curl http://192.168.2.1:8080/v1/AUTH_test/public

# Download a (public readable) object
curl http://192.168.2.1:8080/v1/AUTH_test/public/obj

# Upload an object
curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "Content-Length: 36816" \
-H "X-Auth-Token: AUTH_tk5917..."
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https://developer.openstack.org/api-ref/object-store/index.html 

http://192.168.2.101:8080/v1/AUTH_test/public
http://192.168.2.1:8080/v1/AUTH_test/public/obj
http://192.168.2.1:8080/v1/AUTH_test/sample/obj
https://developer.openstack.org/api-ref/object-store/index.html#objects
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Headers, metadata & swift CLI
System metadata & custom metadata

# Generally: try “--debug” with the swift CLI
swift --debug list container

curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X POST
-H "X-Delete-After: 5" \
-H “X-Object-Meta-Some: value”

swift post -H “X-Delete-After: 5” -m “Some: value”
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https://developer.openstack.org/api-ref/object-store/index.html 

http://192.168.2.1:8080/v1/AUTH_test/sample/obj
https://developer.openstack.org/api-ref/object-store/index.html#objects
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Authentication
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tempauth
Built-in auth for development & testing. Don’t use in production

curl -I \
-H "X-Auth-User: test:tester" \
-H "X-Auth-Key: testing" 
http://192.168.2.1:8080/auth/v1.0

< X-Storage-Url: http://192.168.2.1:8080/v1/AUTH_test
< X-Auth-Token: AUTH_tk5917… 

curl -I -H "X-Auth-Token: AUTH_tk59… 
http://192.168.2.1:8080/v1/AUTH_test

< X-Account-Object-Count: 9
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http://192.168.2.101:8080/auth/v1.0
http://192.168.2.1:8080/v1/AUTH_test
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Keystone
The default auth in OpenStack

curl -i -H "Content-Type: application/json" \
  -d ‘{"auth": {
    "identity": {
      "methods": ["password"],
      "password": {
        "user": {
          "name": "admin",
          "domain": { "id": "default" },
          "password": "adminpwd"
        }
      }
    }
  }
}' “http://192.168.2.1:5000/v3/auth/tokens”
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http://192.168.2.1:5000/v3/auth/tokens
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tempurl
Pre-computed URLs for one specific object action

import hmac
from hashlib import sha1
from time import time
method = 'GET'
expires = int(time() + 60)
path = '/v1/AUTH_test/cont/obj'
key = 'secret'

hmac_body = '%s\n%s\n%s' % (method, expires, path)
sig = hmac.new(key, hmac_body, sha1).hexdigest()
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swift post -m “temp-url-key: secret” containername

http://swift.com/v1/AUTH_test/cont/obj?temp_url_sig=5d4aa...&tem
p_url_expires=1517568481 

http://swift.com/v1/AUTH_test/cont/obj?temp_url_sig=5d4aa...&temp_url_expires=1517568481
http://swift.com/v1/AUTH_test/cont/obj?temp_url_sig=5d4aa...&temp_url_expires=1517568481
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formpost
Similar to tempurl, but for HTML forms

# Like tempauth, plus:

redirect = 'https://srv.com/some-page'
max_file_size = 104857600
max_file_cnt = 10

hmac_body = '%s\n%s\n%s\n%s\n%s' % (
path, redirect, max_file_size, max_file_cnt, expires)

signature = hmac.new(key, hmac_body, sha1).hexdigest()
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https://docs.openstack.org/swift/latest/middleware.html#formpost 

https://docs.openstack.org/swift/latest/middleware.html#formpost
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ACLs

# Make container listing and objects public readable
swift post -r ".r:*,.rlistings" public

# Allow “user2” to write to container
swift post -w "tenant:user2" public

swift stat container
> Read ACL: .r:*,.rlistings
> Write ACL: tenant:user

12
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Authentication summary

Account Container Object

anonymous X ✔ ✔

w/ Token ✔ ✔ ✔

tempurl X X ✔

formpost X X ✔

13
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API Features
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Container listings
Listings can be modified using querystring parameters
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limit=2 Returns only 2 entries

marker=1000 Starts List with object names larger than 
marker

end_marker=2000 List ends with object names smaller than 
end_marker

prefix=sub/ Only returns objects whose name start with 
the prefix “sub/”

reverse=on Reverse order listing

format=json Returns list as JSON (can be XML as well)

http://192.168.2.1:8080/v1/AUTH_test/public?limit=2

http://192.168.2.101:8080/v1/AUTH_test/public
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Expiring objects
Blocks request after given time and deletes objects shortly after

curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "X-Auth-Token: AUTH_tk591…” \
-H "X-Delete-After: 5"

curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "X-Auth-Token: AUTH_tk591…” \
-H "X-Delete-At: 1517210485"
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Static large objects
● Objects are limited to 5GB by default
● Split larger objects into chunks
● Upload them, and finally a manifest

[{"path": "/cont/chunk_00001",
  "etag": "etagoftheobjectsegment",
  "size_bytes": 10485760,
  "range": "1048576-2097151"},
…]

$ curl -X PUT http://…/cont/obj?multipart-manifest=put
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Range requests
Sounds simple, but especially wanted for video (seeking, preview)

# obj content: "Hello World from Fosdem!"

# Returns only “Hello”
curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "X-Auth-Token: AUTH_tk5917…" \
-H "Range: bytes=0-5"

# Returns multipart/byteranges + “Hello Fosdem!”
curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "X-Auth-Token: AUTH_tk5917…" \
-H "Range: bytes=0-5,16-"

18
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Click to add subtitle
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Click to add subtitle
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Versioning
Keeps objects in given container when they are DELETED

curl -i http://192.168.2.1:8080/v1/AUTH_test/fosdem \
-X PUT -H "X-Auth-Token: AUTH_tk187…" \
-H "X-History-Location: archive"

# After object delete archive container looks like:
006fosdem/1517212630.62613
006fosdem/1517212640.36957
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https://docs.openstack.org/swift/latest/overview_object_versioning.html

https://docs.openstack.org/swift/latest/overview_object_versioning.html
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CORS
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Cross-origin resource sharing

Enable CORS by setting header 
X-Container-Meta-Access-Control-Allow-Origin on container to 
http://static.example.com

https://docs.openstack.org/swift/latest/cors.html 

swift.example.com
static.example.com

index.htmlContainer listing

http://static.example.com
https://docs.openstack.org/swift/latest/cors.html
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Examples
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AngularJS + public container
$http.get(base_url + "?prefix=img").then(

function(response) {
    imgs = response.data;
    showImage(index);

}
);

var showImage = function() {
$scope.img = base_url + "/" + imgs[index].name;
$http.head($scope.img).then(

    function(response) {
        $scope.headers = response.headers();
    }

);
}
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github.com/cschwede/snippets/tree/master/fosdem2018 

https://github.com/cschwede/snippets/tree/master/fosdem2018
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Click to add subtitle



Developing applications with Swift as Storage System

Creating tempurls in Lua
local function tempurl(url, key, method)
  local expires = tostring(os.time() + 900)
  local path = url:match(".*(/v1/.*)$")

  local hmac_body = string.format(
    "%s\n%s\n%s", method, expires, path)

  local sig = LrDigest.HMAC.digest(
    hmac_body, 'SHA1', key)

  return string.format(
    "%s?temp_url_sig=%s&temp_url_expires=%s",
    url, signature, expires)
end

26
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CLICK TO ADD TITLE
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Click to add subtitle

https://github.com/cschwede/OpenStackSwift.lrplugin/

https://github.com/cschwede/OpenStackSwift.lrplugin/
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Python

from swiftclient import client
try:
  (storage_url, auth_token) = client.get_auth(
    auth_url, username, password, auth_version)
except client.ClientException:
  # log error here

client.get_account(storage_url, auth_token)

client.put_container(storage_url, auth_token, 
container)
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Simplest way: use python-swiftclient
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Creating secret for tempurl/formpost
account = client.get_account(

storage_url, auth_token)
key = account[0].get('x-account-meta-temp-url-key')

if not key:
  chars = string.ascii_lowercase + string.digits
  key = ''.join(
    random.choice(chars) for x in range(32))

  headers = {'x-account-meta-temp-url-key': key}

  client.post_account(
    storage_url, auth_token, headers)

29
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https://github.com/cschwede/django-swiftbrowser 

https://github.com/cschwede/django-swiftbrowser
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How do I get started?
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git clone https://github.com/cschwede/dockerswift/
cd dockerswift
docker build -t swift .
docker run -p 8080:8080 -v node:/srv/node swift

virtualenv swift-venv
source swift-env/bin/activate
pip install python-swiftclient
export ST_USER=test:tester
export ST_KEY=testing
export ST_AUTH=http://192.168.2.101:8080/auth/v1.0

swift --debug [list|stat]

https://github.com/cschwede/dockerswift/
http://192.168.2.101:8080/auth/v1.0


THANK YOU!
Christian Schwede

cschwede@redhat.com

Slides: fosdem.org/2018/schedule/event/app_development_w_swift_storage/ 

mailto:cschwede@redhat.com
https://fosdem.org/2018/schedule/event/app_development_w_swift_storage/

