
Developing applications using
OpenStack Swift as Storage
All about the API features to power up your apps

Christian Schwede, Software Engineer, Red Hat

FOSDEM 2018, Brussels

Developing applications with Swift as Storage System

What is OpenStack Swift?

2

● Object Storage
● Flat namespace
● Unstructured data
● Scalable, durable, reliable
● In production for ~8 years

https://video.fosdem.org/2018/, Room H.2213

https://video.fosdem.org/2018/

Developing applications with Swift as Storage System3

Swift
Cluster

DB

App
Server

M
etadataBina

ry
da

ta

The big picture

Developing applications with Swift as Storage System

Swift uses a simple REST API based on GET, PUT, HEAD, POST requests

4

Proxy

Storage nodes

PUT http://swift.com/v1/account/container/obj

REST API

Developing applications with Swift as Storage System

REST API
Swift uses a simple REST API based on GET, PUT, HEAD, POST requests

List objects in a (public readable) container
curl http://192.168.2.1:8080/v1/AUTH_test/public

Download a (public readable) object
curl http://192.168.2.1:8080/v1/AUTH_test/public/obj

Upload an object
curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "Content-Length: 36816" \
-H "X-Auth-Token: AUTH_tk5917..."

5

https://developer.openstack.org/api-ref/object-store/index.html

http://192.168.2.101:8080/v1/AUTH_test/public
http://192.168.2.1:8080/v1/AUTH_test/public/obj
http://192.168.2.1:8080/v1/AUTH_test/sample/obj
https://developer.openstack.org/api-ref/object-store/index.html#objects

Developing applications with Swift as Storage System

Headers, metadata & swift CLI
System metadata & custom metadata

Generally: try “--debug” with the swift CLI
swift --debug list container

curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X POST
-H "X-Delete-After: 5" \
-H “X-Object-Meta-Some: value”

swift post -H “X-Delete-After: 5” -m “Some: value”

6

https://developer.openstack.org/api-ref/object-store/index.html

http://192.168.2.1:8080/v1/AUTH_test/sample/obj
https://developer.openstack.org/api-ref/object-store/index.html#objects

Developing applications with Swift as Storage System7

Authentication

Developing applications with Swift as Storage System

tempauth
Built-in auth for development & testing. Don’t use in production

curl -I \
-H "X-Auth-User: test:tester" \
-H "X-Auth-Key: testing"
http://192.168.2.1:8080/auth/v1.0

< X-Storage-Url: http://192.168.2.1:8080/v1/AUTH_test
< X-Auth-Token: AUTH_tk5917…

curl -I -H "X-Auth-Token: AUTH_tk59…
http://192.168.2.1:8080/v1/AUTH_test

< X-Account-Object-Count: 9

8

http://192.168.2.101:8080/auth/v1.0
http://192.168.2.1:8080/v1/AUTH_test

Developing applications with Swift as Storage System

Keystone
The default auth in OpenStack

curl -i -H "Content-Type: application/json" \
 -d ‘{"auth": {
 "identity": {
 "methods": ["password"],
 "password": {
 "user": {
 "name": "admin",
 "domain": { "id": "default" },
 "password": "adminpwd"
 }
 }
 }
 }
}' “http://192.168.2.1:5000/v3/auth/tokens”

9

http://192.168.2.1:5000/v3/auth/tokens

Developing applications with Swift as Storage System

tempurl
Pre-computed URLs for one specific object action

import hmac
from hashlib import sha1
from time import time
method = 'GET'
expires = int(time() + 60)
path = '/v1/AUTH_test/cont/obj'
key = 'secret'

hmac_body = '%s\n%s\n%s' % (method, expires, path)
sig = hmac.new(key, hmac_body, sha1).hexdigest()

10

swift post -m “temp-url-key: secret” containername

http://swift.com/v1/AUTH_test/cont/obj?temp_url_sig=5d4aa...&tem
p_url_expires=1517568481

http://swift.com/v1/AUTH_test/cont/obj?temp_url_sig=5d4aa...&temp_url_expires=1517568481
http://swift.com/v1/AUTH_test/cont/obj?temp_url_sig=5d4aa...&temp_url_expires=1517568481

Developing applications with Swift as Storage System

formpost
Similar to tempurl, but for HTML forms

Like tempauth, plus:

redirect = 'https://srv.com/some-page'
max_file_size = 104857600
max_file_cnt = 10

hmac_body = '%s\n%s\n%s\n%s\n%s' % (
path, redirect, max_file_size, max_file_cnt, expires)

signature = hmac.new(key, hmac_body, sha1).hexdigest()

11

https://docs.openstack.org/swift/latest/middleware.html#formpost

https://docs.openstack.org/swift/latest/middleware.html#formpost

Developing applications with Swift as Storage System

ACLs

Make container listing and objects public readable
swift post -r ".r:*,.rlistings" public

Allow “user2” to write to container
swift post -w "tenant:user2" public

swift stat container
> Read ACL: .r:*,.rlistings
> Write ACL: tenant:user

12

Developing applications with Swift as Storage System

Authentication summary

Account Container Object

anonymous X ✔ ✔

w/ Token ✔ ✔ ✔

tempurl X X ✔

formpost X X ✔

13

Developing applications with Swift as Storage System14

API Features

Developing applications with Swift as Storage System

Container listings
Listings can be modified using querystring parameters

15

limit=2 Returns only 2 entries

marker=1000 Starts List with object names larger than
marker

end_marker=2000 List ends with object names smaller than
end_marker

prefix=sub/ Only returns objects whose name start with
the prefix “sub/”

reverse=on Reverse order listing

format=json Returns list as JSON (can be XML as well)

http://192.168.2.1:8080/v1/AUTH_test/public?limit=2

http://192.168.2.101:8080/v1/AUTH_test/public

Developing applications with Swift as Storage System

Expiring objects
Blocks request after given time and deletes objects shortly after

curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "X-Auth-Token: AUTH_tk591…” \
-H "X-Delete-After: 5"

curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "X-Auth-Token: AUTH_tk591…” \
-H "X-Delete-At: 1517210485"

16

Developing applications with Swift as Storage System

Static large objects
● Objects are limited to 5GB by default
● Split larger objects into chunks
● Upload them, and finally a manifest

[{"path": "/cont/chunk_00001",
 "etag": "etagoftheobjectsegment",
 "size_bytes": 10485760,
 "range": "1048576-2097151"},
…]

$ curl -X PUT http://…/cont/obj?multipart-manifest=put

17

Developing applications with Swift as Storage System

Range requests
Sounds simple, but especially wanted for video (seeking, preview)

obj content: "Hello World from Fosdem!"

Returns only “Hello”
curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "X-Auth-Token: AUTH_tk5917…" \
-H "Range: bytes=0-5"

Returns multipart/byteranges + “Hello Fosdem!”
curl http://192.168.2.1:8080/v1/AUTH_test/cont/obj \
-X PUT -H "X-Auth-Token: AUTH_tk5917…" \
-H "Range: bytes=0-5,16-"

18

Developing applications with Swift as Storage System19

Click to add subtitle

Developing applications with Swift as Storage System20

Click to add subtitle

Developing applications with Swift as Storage System

Versioning
Keeps objects in given container when they are DELETED

curl -i http://192.168.2.1:8080/v1/AUTH_test/fosdem \
-X PUT -H "X-Auth-Token: AUTH_tk187…" \
-H "X-History-Location: archive"

After object delete archive container looks like:
006fosdem/1517212630.62613
006fosdem/1517212640.36957

21

https://docs.openstack.org/swift/latest/overview_object_versioning.html

https://docs.openstack.org/swift/latest/overview_object_versioning.html

Developing applications with Swift as Storage System

CORS

22

Cross-origin resource sharing

Enable CORS by setting header
X-Container-Meta-Access-Control-Allow-Origin on container to
http://static.example.com

https://docs.openstack.org/swift/latest/cors.html

swift.example.com
static.example.com

index.htmlContainer listing

http://static.example.com
https://docs.openstack.org/swift/latest/cors.html

Developing applications with Swift as Storage System23

Examples

Developing applications with Swift as Storage System

AngularJS + public container
$http.get(base_url + "?prefix=img").then(

function(response) {
 imgs = response.data;
 showImage(index);

}
);

var showImage = function() {
$scope.img = base_url + "/" + imgs[index].name;
$http.head($scope.img).then(

 function(response) {
 $scope.headers = response.headers();
 }

);
}

24

github.com/cschwede/snippets/tree/master/fosdem2018

https://github.com/cschwede/snippets/tree/master/fosdem2018

Developing applications with Swift as Storage System25

Click to add subtitle

Developing applications with Swift as Storage System

Creating tempurls in Lua
local function tempurl(url, key, method)
 local expires = tostring(os.time() + 900)
 local path = url:match(".*(/v1/.*)$")

 local hmac_body = string.format(
 "%s\n%s\n%s", method, expires, path)

 local sig = LrDigest.HMAC.digest(
 hmac_body, 'SHA1', key)

 return string.format(
 "%s?temp_url_sig=%s&temp_url_expires=%s",
 url, signature, expires)
end

26

Developing applications with Swift as Storage System

CLICK TO ADD TITLE

27

Click to add subtitle

https://github.com/cschwede/OpenStackSwift.lrplugin/

https://github.com/cschwede/OpenStackSwift.lrplugin/

Developing applications with Swift as Storage System

Python

from swiftclient import client
try:
 (storage_url, auth_token) = client.get_auth(
 auth_url, username, password, auth_version)
except client.ClientException:
 # log error here

client.get_account(storage_url, auth_token)

client.put_container(storage_url, auth_token,
container)

28

Simplest way: use python-swiftclient

Developing applications with Swift as Storage System

Creating secret for tempurl/formpost
account = client.get_account(

storage_url, auth_token)
key = account[0].get('x-account-meta-temp-url-key')

if not key:
 chars = string.ascii_lowercase + string.digits
 key = ''.join(
 random.choice(chars) for x in range(32))

 headers = {'x-account-meta-temp-url-key': key}

 client.post_account(
 storage_url, auth_token, headers)

29

Developing applications with Swift as Storage System30

https://github.com/cschwede/django-swiftbrowser

https://github.com/cschwede/django-swiftbrowser

Developing applications with Swift as Storage System

How do I get started?

31

git clone https://github.com/cschwede/dockerswift/
cd dockerswift
docker build -t swift .
docker run -p 8080:8080 -v node:/srv/node swift

virtualenv swift-venv
source swift-env/bin/activate
pip install python-swiftclient
export ST_USER=test:tester
export ST_KEY=testing
export ST_AUTH=http://192.168.2.101:8080/auth/v1.0

swift --debug [list|stat]

https://github.com/cschwede/dockerswift/
http://192.168.2.101:8080/auth/v1.0

THANK YOU!
Christian Schwede

cschwede@redhat.com

Slides: fosdem.org/2018/schedule/event/app_development_w_swift_storage/

mailto:cschwede@redhat.com
https://fosdem.org/2018/schedule/event/app_development_w_swift_storage/

