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Motivation & Problem Statement

 Lots of good features

 AF_PACKET performance does not meet 
application requirement

 High networking performance

 Hard to use

 Might lack lots of features

 Might have little to no integration with Linux

 Not part of Linux net subsystem in kernel.org
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How can we combine the functionality and ease-of-use of AF_PACKET 
sockets with the networking performance of these other solutions?
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Proposed Solution 

 New fast packet interfaces in Linux

– AF_XDP: XDP’s user-space interface

– No system calls in data path

– True zero-copy mode with new allocator, DMA 
packet buffers mapped to user space

– Copy-mode for non-modified drivers

– HW descriptors only mapped to kernel

 ZC mode requires HW steering support for 
untrusted applications

– Copy required otherwise

 Goal is to hit 40 Gbit/s line rate on a single 
core for large packets and 25 Gbit/s for 64 
byte packets
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Benefits of Proposed Solution: Linux View

 Much faster standard libc based networking

– Supports standard libc networking APIs

– Goal: to be closer to DPDK performance

 Support all Linux network devices 

– E.g. virtio, veth, or your favorite NIC

– Requires XDP support in driver

 Future work:

– Speed up networking to VMs
– Plug in virtio-net ring

– No need for SR-IOV?

– Extend it to other device types
– Crypto and block devices?
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Benefits of Proposed Solution: DPDK View

 DPDK AF_XDP based PMD

– No change to DPDK apps

– Cost goal: <10% performance decrease

– Linux handles hardware

 Full isolation between processes/containers

 Linux features can now be used without having 
to reimplement some of them in DPDK

– Power save, scheduling, etc.

 No need for bifurcated SR-IOV drivers

 Goal: Linux HW APIs can be used for setup

– become as simple as ”./my_app”

– DPDK should just behave like a shared 
library
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How to Use It?

sfd = socket(PF_XDP, SOCK_RAW, 0);

buffs = calloc(num_buffs, FRAME_SIZE);

setsockopt(sfd, SOL_XDP, XDP_MEM_REG, &mr_req, sizeof(mr_req));

setsockopt(sfd, SOL_XDP, XDP_RX_RING, &req, sizeof(req));

setsockopt(sfd, SOL_XDP, XDP_TX_RING, &req, sizeof(req));

mmap(..., sfd); /* map kernel Tx/Rx rings */

struct sockaddr_xdp addr = { PF_XDP, ifindex, queue_id };

bind(sfd, addr, sizeof(addr));

for (;;) {

read_messages(sfd, msgs, ....);

process_messages(msgs);

send_messages(sfd, msgs, ....); 

};
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XDP with AF_XDP

 XDP = Small program injected into driver

 Actions: DROP, PASS, TX, and REDIRECT

– Forwarding

– Introspection and debugging

– ACLs and DDos mitigation

 REDIRECT can now be done to AF_XDP socket

– E.g., send specific packets to user space

 Future: descriptor rewriting

– virtio-net support

– Or any other format

 Future: load balancing, copy to socket + PASS 
(fast tcpdump)
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Operation Modes

From slower -> faster

 XDP_SKB:

– Works on any netdevice using sockets and generic XDP path

 XDP_DRV:

– Works on any device with XDP support (all three NDOs)

 XDP_DRV + ZC:

– Need buffer allocator support in driver + a new NDO for TX
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Zerocopy Support: Basic Principle

 Application still HW agnostic with ZC

 Each application gets its own packet buffer and TX/RX descriptor rings

– Packet buffers can be shared if desired

– TX/RX descriptor rings always private to process
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Security and Isolation Requirements for XDP_DRV 
+ ZC

 Important properties:

– User space cannot crash kernel or other processes

– User space cannot read or write any kernel data

– User-space cannot read or write any packets from other processes unless 
packet buffer is explicitly shared

 Requirement for untrusted applications: 

– HW packet steering, when there are packets with multiple destinations 
arriving on the same interface

– If not available => XDP_SKB or XDP_DRV mode need to be used
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Experimental Setup

 RFC V1 of AF_XDP published on Januray 31, 2018

 Broadwell E5-2699 v4 @ 2.10GHz

 2 cores used for benchmarks

 Rx is a softirq (thread)

 Tx is driven from application via syscall

– TX and RX is currently in same NAPI context

– Item in backlog to make this a thread on third core

 One VSI / queue pair used on I40E. 40Gbit/s interface

 Ixia load generator blasting at full 40 Gbit/s
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Performance I40E 64-Byte Packets
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AF_PACKET V3 XDP_SKB XDP_DRV XDP_DRV + ZC

rxdrop 0.73 Mpps 3.3 Mpps 11.6 Mpps 16.9 Mpps

txpush 0.98 Mpps 2.2 Mpps - 21.8 Mpps

l2fwd 0.71 Mpps 1.7 Mpps - 10.3 Mpps

 XDP_SKB mode up to 5x faster than previous best on Linux

 XDP_DRV ~16x faster

 XDP_DRV + ZC up to ~22x faster

– Not optimized at all at this point!

– Rxdrop for AF_PACKET V4 in zero-copy mode was at 33.7 Mpps after 
some optimizations. We have more work to do.

“Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration
may affect actual performance. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to http://www.intel.com/performance/datacenter.
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Future Work

 More performance optimization work

 Try it out on real workloads

 Make send syscall optional and get TX off RX core

 Packet steering using XDP

 Metadata support, using XDP data_meta

 Queue pairs w/o HW support gets emulated

 XDP redirect to other netdevices RX path

 1 XDP program per queue pair

 XDP support on TX

 Multi produce single consumer queues for AF_XDP

 Clone pkt configuration
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Conclusions

 Introduced AF_XDP

 Integrated with XDP

 AF_XDP with zero-copy provides up to 20x performance improvements 
compared to AF_PACKET V2 and V3 in our experiments on I40E NIC

 RFC on the netdev mailing list

 Still lots of performance optimization and design work to be performed

 Lots of exciting XDP extensions possibile in conjunction with AF_XDP

Check out the RFC:

https://patchwork.ozlabs.org/cover/867937/
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Packets from Kernel to Process
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