
SPARK Language: Historical 
Perspective & FOSS Development

Yannick Moy – SPARK Product Manager – AdaCore 

…



Historical Perspective

1987
SPARK

PVL

1997
C130J

Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK, Chapman and Schanda, Altran, ITP 2014

2011
iFACTS

2005
Tokeneer

2013
Muen

2008



From SPARK 2005…

http://www.open-do.org/projects/hi-lite/a-lighter-introduction-to-hi-lite/



…to SPARK 2014



…to SPARK 2014

… in a monospace font with ligatures like FiraCode



SPARK Open Source Ecosystem



SPARK Flow Analysis 

Specification 
of effects

Flow 
analysis

Program 
implements 
specification



SPARK Proof

Specification 
of properties Proof

Program 
implements 
specification



Main Objectives for SPARK 2014

Functional contracts can be executed, tested, debugged

Ada subset supported is as large as possible

User needs no annotation to start proving code

User needs few annotations to fully prove code

Manual proof of formulas is not needed



Contracts can be executed, tested, debugged

Use the Ada 2012 preconditions (aspect Pre) and postconditions
(aspect Post)

CONTRACTS = CODE

à Needed quantified-expressions in Ada 2012
(for [some/all] V in Low .. High => Property(V))

à Needed expression-functions in Ada 2012
function Property (V : T) return Boolean is (…);



Ada subset supported is as large as possible

Only exclude features that make formal verification impossible:
1. Pointers (but references and addresses are OK)

2. Exceptions (but raising one is OK)

Support in particular all types (except access and tagged), no restriction on 
control flow, recursion, generics

Initial version of SPARK 2014 did not yet support OO programming, 
concurrency, data invariants, but… 



Ada subset supported is expanding

Support for OO programming in 2015, based on Liskov Substitution 
Principle

Support for concurrency in 2016, based on Ravenscar

Support for type predicates in 2016 and for type invariants in 2017

Support for safe ownership (Rust-like) pointers in 2019-2020



User needs no annotation to start proving

Subprogram signature defines a default functional contract:
- Precondition: inputs (parameters and global variables) in their types 
- Postcondition: outputs (parameters and global variables) in their types

Global variables read/written generated by the tool when not provided



User needs few annotations to fully prove code

Proof is mostly modular
à Preconditions and postconditions needed to analyze calls

Inlining mechanisms to do without annotations:
- Inlining of internal subprograms with no contracts
- Unrolling of simple for-loops

Factorization of annotations with data invariants

Better generation of formulas à fewer loop invariants, no cutpoints

er



User really needs few annotations!er

Example: SPARKSkein Skein cryptographic hash algorithm (Chapman, 2011)
http://www.spark-2014.org/entries/detail/sparkskein-from-tour-de-force-to-run-
of-the-mill-formal-verification

initial version (SPARK 2005) current version (SPARK 2014)
41 non-trivial contracts for effects and 
dependencies

1 – effects and dependencies are 
generated

31 conditions in preconditions and 
postconditions on internal subprograms

0 – internal subprograms are inlined

43 conditions in loop invariants 1 – loop frame conditions are generated

23 annotations to prevent combinatorial 
explosion

0 – no combinatorial explosion



Manual proof of formulas was needed

Verification Condition 
in SPARK 2005

Manual Proof
in SPARK 2005



Manual proof of formulas was needed

Verification Condition 
in SPARK 2005

Manual Proof
in SPARK 2005



Manual proof of formulas is not needed

Use of state-of-the-art SMT solvers: Alt-Ergo, CVC4, Z3
- Why3 platform adapts each formula for each prover
- Mix of arithmetic and quantified properties natively understood by these 

provers

Encoding of data in logic tailored for automatic proof by SMT solvers
- Encoding not tailored for manual proof

User control over proof strategy (provers combination, timeout)



FOSS Projects in SPARK



Aida library

https://github.com/joakim-strandberg/aida_2012

Library suitable for use in SPARK code, mostly coded in SPARK:
- Bounded strings
- Bounded hash maps, vectors
- UTF8 support
- XML SAX & DOM parsers
- JSON SAX & DOM parsers
- Directories, stream & textual input-output 



Certyflie drone software

https://github.com/AdaCore/Certyflie

Rewrite of the original Crazyflie firmware in SPARK:
- FreeRTOS replaced by Ravenscar
- C stabilization and communication code rewritten in SPARK (AoRTE proof)

Demo feature: free-fall detection and landing

Used for prototyping, teaching and research
- Sogilis using it for prototyping
- Jérôme Hugues (ISAE-Supaero) using it for teaching/research



PolyORB-HI

https://github.com/OpenAADL/polyorb-hi-ada

High-integrity middleware for code generation from AADL:
- marshalling and unmarshalling facilities
- messages management
- patterns for periodic, sporadic tasks etc.

Proof of AoRTE + functional contracts (see Frama-C & SPARK Day 2017 -
https://frama-c.com/FCSD17.html)



Pulsar drone autopilot

https://www.hionos.com/#pulsar

No public code repository yet
- Part of ongoing funded research project CAP2018
- Should be available by end of 2018

Autopilot developed with agile process targeting civil avionics
certification (DO-178C level A)

SPARK used for proving some of the functionalities + AoRTE



StratoX glider software 

https://github.com/tum-ei-rcs/StratoX

Firmware to control an unmanned fixed-wing glider model

Proof of AoRTE + functional contracts (see Frama-C & SPARK Day 2017 -
https://frama-c.com/FCSD17.html)



Tokeneer biometric enclave

https://www.adacore.com/tokeneer
https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatpro
ve/tests/tokeneer

Demo project done by Altran for NSA in 2005, open-sourced in 2008
- All project artifacts & statistics collected and available
- Code fully annotated with contracts, even if not needed anymore

Goal of achieving very high level of security (EAL 5)



Muen separation kernel

https://muen.sk/

Developed since 2013 at University of Rapperswil (Switzerland) with secunet
(Germany)

Runs on Intel x86/64 platform

First version in 2015: 3000 sloc SPARK, 300 sloc assembly

Just released version 0.9

- Project website served by MirageOS on Muen!



Muen separation kernel

The Muen Separation Kernel is the world’s first Open Source 
microkernel that has been formally proven to contain no runtime errors
at the source code level.

Originally written in SPARK 2005. Then fully migrated to SPARK 2014.



Muen vs Meltdown/Spectre

Muen not vulnerable to Meltdown: Meltdown is defended by our design 
decision to have a simple architecture which only utilizes a single isolation 
mechanism: hardware virtualization. 
https://groups.google.com/forum/#!topic/muen-dev/1ILwIz8h-kM

Muen little vulnerable to Spectre: The Muen kernel is affected by Spectre 
(one indirect jump in debug build, one indirect access after range check). The 
observed issues can be fixed with small local changes and no architectural 
modifications. 
https://groups.google.com/forum/m/#!topic/muen-dev/4tC3MbPxTOQ



SPARK Community Resources



SPARK Community Releases

Every year in June - https://www.adacore.com/community

SPARK will be bundled with GNAT in the Community release 2018

Current differentiator between SPARK Pro and SPARK Discovery:
- Provers CVC4 and Z3 not shipped in SPARK Discovery

- Static analyzer CodePeer not shipped in SPARK Discovery

- As a result, counterexamples not available, and proof less automatic

Installation of CVC4 and Z3 documented in SPARK User’s Guide
- Section “Installing CVC4 and Z3 for SPARK Discovery”



SPARK Learning Resources

AdaCore University – 5-module class on SPARK
u.adacore.com à will move to new Ada/SPARK learning website

This + advanced 5-module class on SPARK on AdaCoreU GitHub:
https://github.com/AdaCoreU

Blog http://www.spark-2014.org/ à will move to AdaCore blog in 2018

Online SPARK RM, SPARK User’s Guide, distributed examples, booklet



SPARK Learning Community Resources

SPARK by Example - https://github.com/yoogx/spark_examples

by researchers Jérôme Hugues and Christophe Garion

Similar to ACSL-by-Example by Fraunhofer for Frama-C
(not to be confused with “GNATprove by Example” section of SPARK UG)

Introduction to SPARK - https://www.rcs.ei.tum.de/spark2014-intro/

by researcher Martin Becker

You’re developing your own material? Let us know!



SPARK Community Events

SPARK and Frama-C Days 2018 at NIST (near Washington DC)
- Keynotes by Dave Wheeler, Rustan Leino, David Cok
- Talks, tutorials
- June 27-28

Presentations at conferences
- Alexander Senier at BOB Conference 2018 (Berlin, February 23) "What

happens when we use what's best for a change? » (also in Embedded, mobile and 
automotive devroom)

- Ada Europe (Lisbon, June 18-22)



Online proof with SPARK

https://cloudchecker.r53.adacore.com/



What’s your FOSS Project in 
SPARK?


