
Shared Memory Parallelism in Ada:
Load Balancing by Work Stealing

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
janv@uic.edu

www.phcpack.org

Ada devroom, FOSDEM 2018, 3 February, Brussels, Belgium

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 1 / 22

Outline

1 Problem Statement
computing the permanent of a matrix
high level parallel programming

2 Multitasking in Ada
launching a crew of workers
work stealing with multitasking
application to polynomial system solving

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 2 / 22

Load Balancing by Work Stealing

1 Problem Statement
computing the permanent of a matrix
high level parallel programming

2 Multitasking in Ada
launching a crew of workers
work stealing with multitasking
application to polynomial system solving

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 3 / 22

all perfect matchings in a bipartite graph

Consider the adjacency matrix of a bipartite graph:

A =




0 1 0 1
1 1 1 0
0 1 1 1
1 0 1 0


 perm(A) = 5

4 �

3 �

2 �

1 �

4�

3�

2�

1�
�
�

�
�
�
�
�
��

�
�

�
��
�

�
��

�
�
�
�
��

�
�

The permanent counts all perfect matchings in the graph:

4 �

3 �

2 �

1 �

4�

3�

2�

1�
�
��
�

�
��
�

2 1 4 3

4 �

3 �

2 �

1 �

4�

3�

2�

1�
�
�

�
�

�
��

�
�
�
�
��

2 3 4 1

4 �

3 �

2 �

1 �

4�

3�

2�

1�
�
�
�
�
�
��

�
�

�
�

�
�

4 1 2 3

4 �

3 �

2 �

1 �

4�

3�

2�

1�
�
�
�
�
�
���

�
�
�
�
��

4 2 3 1

4 �

3 �

2 �

1 �

4�

3�

2�

1�
�
�
�
�
�
��

�
��
�

�
�
�
�
�
��

4 3 2 1

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 4 / 22

row expansions

A =




0 1 0 1
1 1 1 0
0 1 1 1
1 0 1 0




We expand along the rows:

perm(A) = 1 ×

 1 1 0

0 1 1
1 1 0


+ 1 ×


 1 1 1

0 1 1
1 0 1




= 1 ×
(

1 ×
[

1 1
1 0

]
+ 1 ×

[
0 1
1 0

])

+ 1 ×
(

1 ×
[

1 1
0 1

]
+ 1 ×

[
0 1
1 1

]
+ 1 ×

[
0 1
1 0

])

= · · ·

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 5 / 22

computational experiments
The permanent of an n-by-n matrix A is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai ,σ(i),

where Sn is the set of all permutations of n numbers, #Sn = n!.

On a MacBook Pro 3.1 GHz Intel Core i7,
timings on randomly generated Boolean matrices,
of dimension n = 14,15,16,17, the CPU time in seconds:

n time
14 1.439
15 10.419
16 58.497
17 170.828

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 6 / 22

expanding the first two rows

Consider the first two rows in the matrix A:

A =




0 1 1 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 1 0
1 1 1 1 1 0 0 1 1 0
1 0 1 1 1 1 0 0 1 0
0 0 1 0 0 0 1 1 1 0
1 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 1 0 1
1 0 0 1 0 1 0 1 1 0
1 1 0 1 1 0 0 0 1 0
0 1 0 1 0 0 1 0 0 0




2 1 · · ·
2 3 · · ·
2 9 · · ·
3 1 · · ·
3 9 · · ·
4 1 · · ·
4 3 · · ·
4 9 · · ·
6 1 · · ·
6 3 · · ·
6 9 · · ·

At the right are the expansions of the first two rows.
Those expansions represent 11 computationally independent jobs.

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 7 / 22

Load Balancing by Work Stealing

1 Problem Statement
computing the permanent of a matrix
high level parallel programming

2 Multitasking in Ada
launching a crew of workers
work stealing with multitasking
application to polynomial system solving

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 8 / 22

shared memory parallel programming

Consider a parallel computation by p processors:
1 all processors share the same memory space;
2 the jobs can be computed independently.

We can work with one static queue of jobs:
The queue is initialized with jobs.
Jobs are popped from the front of the queue.
Popping jobs is guarded by a semaphore.
Idle workers pop jobs till the queue is empty.

This is the work crew model of multithreading.

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 9 / 22

load balancing by work stealing

In the work crew model, processors take jobs from one queue.

In work stealing, underutilized processors steal jobs:
Every processor has its own dequeue of jobs.
A dequeue is a double ended queue, with beginning and end.
Jobs are appended to the end of the dequeue.

A processor treats its own dequeue as a stack:
� pushing new jobs to the end,
� popping jobs from the end.

Processors with empty job queues steal jobs from others,
popping from the beginning of their dequeue.

This idea appeared first in [Burton and Sleep, 1981].
The first provably good work stealing scheduling algorithm
appeared in [Blumofe and Leiserson, 1994].

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 10 / 22

Load Balancing by Work Stealing

1 Problem Statement
computing the permanent of a matrix
high level parallel programming

2 Multitasking in Ada
launching a crew of workers
work stealing with multitasking
application to polynomial system solving

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 11 / 22

starting worker tasks
procedure Workers is instantiated with a Job procedure,
executing code based on the id number.

procedure Workers (n : in natural) is
task type Worker (id,n : natural);
task body Worker is
begin

Job(id,n);
end Worker;
procedure Launch_Workers (i,n : in natural) is

w : Worker(i,n);
begin

if i < n
then Launch_Workers(i+1,n);
end if;

end Launch_Workers;
begin

Launch_Workers(1,n);
end Workers;

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 12 / 22

managing the job queue for the work crew

On input is a list of partially selected column indices.
The job queue is then the corresponding list of pointers:
each job requires the application of recursive row expansions.

The permanent computation is then a pleasingly parallel computation:
no communication overhead during the row expansion.

Management of the job queue:
1 an idle worker requests access to the next pointer in the queue;
2 once given access, the worker takes the job and becomes busy;
3 the factor is added to the factors computed by the worker.

Dynamic load balancing works well in this way.

Source of inspiration: Gem #81: GNAT Semaphores, at
http://www.adacore.com/adaanswers/gems/gem-81

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 13 / 22

wall clock times in seconds on 3.1 GHz Intel Core i7
Random Boolean matrices of dimension 16 are generated.
With 2 tasks, jobs are generated expanding the first two rows:

#jobs permanent serial 2 tasks speedup
39 205676452 48 26 1.85
74 398844456 108 65 1.66
58 457676445 79 44 1.79
14 96908415 16 10 1.60
64 58417614 17 9 1.88

With 4 tasks, the first 3 rows are expanded, for a finer granularity:

#jobs permanent serial 4 tasks speedup
278 282852334 45 24 1.88
420 268894344 95 52 1.83
521 39106098 14 7 2.00
321 77841276 37 20 1.85
359 1394427180 236 126 1.87

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 14 / 22

wall clock times in seconds on 3.1 GHz Intel Core i7
Random Boolean matrices of dimension 16 are generated.
With 3 tasks, expanding the first 3 rows gives more jobs:

#jobs permanent serial 3 tasks speedup
275 29320581 8 4 2.00
173 134237181 27 15 1.80
485 549654797 92 55 1.67
324 158044038 27 15 1.80
597 36928234 11 6 1.83

With 3 tasks, expanding only the first 2 rows gives fewer jobs:

#jobs permanent serial 3 tasks speedup
50 111120492 15 8 1.88
38 116785084 44 22 2.00
39 224525956 35 18 1.94
53 67912248 9 5 1.80
66 497301012 112 56 2.00

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 15 / 22

44-core computer 2.2 GHz Intel Xeon E5-2699
On a random Boolean matrix of dimension 17,
wall clock times are measured in seconds,
jobs are generated expanding the first 3, 3, 4 rows:

#jobs permanent #jobs permanent #jobs permanent
314 1413427296 188 412123207 1432 1452757932

#tasks time speedup #tasks time speedup #tasks time speedup
1 284 1 152 1 431
2 172 1.65 2 86 1.76 2 238 1.81
4 89 3.19 4 45 3.78 4 122 3.53
8 49 5.80 8 24 6.33 8 63 6.84

16 25 11.36 16 13 11.69 16 33 13.06
32 15 18.93 32 8 19.00 32 19 22.68
64 11 25.81 64 6 25.33 64 14 30.79

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 16 / 22

Load Balancing by Work Stealing

1 Problem Statement
computing the permanent of a matrix
high level parallel programming

2 Multitasking in Ada
launching a crew of workers
work stealing with multitasking
application to polynomial system solving

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 17 / 22

work stealing with multitasking

The main data structure is a dequeue, with a beginning and an end.

Although only one processor appends to the dequeue,
both beginning and end must have semaphores.

Underutilized processors pop from the beginning.
Only one underutilized processor may pop, other underutilized
processors must wait or skip to the following dequeue.
New jobs are pushed to the end and popped from the end.
If there is only one last job left, then the processor may have to
wait for an underutilized processor.

We have a sequence of dequeues, one for every task.

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 18 / 22

application of work stealing to the permanent

Instead of generating jobs before the launching of the tasks,
each task generates its own dequeue of jobs:

If for an n-by-n matrix, we consider only the first row,
then task k takes column k , for k ≤ n.
The permutations in the row expansions are serialized.
For p tasks, the k th task takes permutation k , k + p, k + 2p, etc.
and computes the factors only for those permutations.
Every task runs the same enumeration of permutations.
The number of permutations in this enumeration is fixed in
advance, before the launching of the tasks.

The load balancing in this static job assignment scheme then happens
via work stealing. For p processors, task k starts looking at the
dequeue of task k + 1, k + 2, etc. modulo p.

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 19 / 22

Load Balancing by Work Stealing

1 Problem Statement
computing the permanent of a matrix
high level parallel programming

2 Multitasking in Ada
launching a crew of workers
work stealing with multitasking
application to polynomial system solving

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 20 / 22

solving polynomial systems with PHCpack

PHCpack is a package for Polynomial Homotopy Continuation.
ACM Transactions on Mathematical Software achived version 1.0
(Ada 83) as Algorithm 795, vol. 25, no. 2, pages 251–276, 1999.
blackbox solver:
phc -b computes all isolated solutions of a polynomial system.
Version 2.0 was rewritten using concepts of Ada 95
and extended with arbitrary multiprecision arithmetic.
The current version is 2.3.48, last released December 2017.
Distributed under the GNU General Public License.
Public repository under version control
at https://github.com/janverschelde/PHCpack.
Code for this talk is in the folder src/Tasking.

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 21 / 22

applications to polynomial systems

A permanent is a bound on the number of solutions.

For example, the permanent gives the number of totally mixed
Nash equilibria for any number of players with two pure strategies.

We applied work stealing to intersections of polyhedral cones.

This work is published in the Proceedings of PASCO 2017.

Jan Verschelde (UIC) Load Balancing by Work Stealing FOSDEM 2018, 3 February 22 / 22

