Contract-based Programming:
a Route to Finding Bugs Earlier

Jacob Sparre Andersen

JSA Research & Innovation

February 2018

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introducti
on Subprogram Contracts

Type Co

Contract-based Programming

A software development technique, used to find programming
errors earlier in the development process.

In its strictest form, the contracts are checked as a part of the
compilation process, and only a program which can be proven
to conform with the contracts will compile’.

In a less strict form, it is more similar to “preventive debugging”,
where the contracts are inserted as run-time checks, which
makes it more likely to identify errors during testing.

In this presentation | will focus on preventive debugging, i.e.
how you can insert assertions efficiently in your source text.

"This is what SPARK 2014 does. Stay for the following presentation, if you
find it interesting.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introduction
Subprogram Contracts

Type Contracts

Contract-based Programming

You insert assertions in your source text to tell all readers of
the source text — both humans, compilers and other tools —
something concrete about the execution state of the software.

Notice that assertions are different from comments, since the
compiler understands them, and can both check that they are
correct, and use them for optimising the generated code.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introducti
‘on Subprogram Contracts

Type Contracts

Assertions

It is unfortunately common to disable run-time checking of
unproven assertions in production code, and only have the
run-time checking enabled during testing.

In my view that is like bringing along the life-vests during testing
of a ship, but removing them before going to sea for real, so...

Don’t do that!

If run-time checking of a specific assertion is too costly for the
timing requirements of your application, prove that the
assertion is correct. Once the assertion has been proven true,
it is safe to disable checking of it at run-time.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introduction Subprogram Contracts

Type Contracts

Subprogram Contracts: Pre- and Post-conditions

The typical view of contract-based programming is that its core
is pre- and post-conditions of subprograms (functions,
procedures, etc.)

Here is an example:

procedure Increment (Counter : in out Natural;
Step : in Positive)
with Pre => (Counter < Natural’Last) and
(Step <= Natural’Last - Counter),
Post => (Counter > 0);

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introduction

Subprogram Contracts
Type Contracts

Subprogram Contracts: Pre- and Post-conditions

You could achieve the same run-time effect with plain
old-fashioned assertions in the body of the subprogram:

procedure Increment (Counter : in out Integer;

Step : in Integer) is
begin
pragma Assert (0 <= Counter); -- Natural
pragma Assert (1 <= Step); —— Positive

pragma Assert ((Counter < Integer’Last) and
(Step <= Natural’Last - Counter));

Counter := Counter + Step;

pragma Assert (Counter > 0);
end Increment;

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introduction Subprogram Contracts

Type Contracts

Subprogram Contracts: Pre- and Post-conditions

Having the assertions in the specification does give us some
benefits:

@ You can write them when you specify the subprogram. —
This is a benefit for us humans.

@ They are visible to the user of the subprogram. — This is a
benefit for us humans.

@ They are explicitly a part of the interface between the

subprogram and its users. — This is a benefit for static
analysis tools.

But none of these benefits can easily be shown to really scale
to a significant difference in development effort.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introduction
Subprogram Contracts

Type Contracts

Type Contracts

When you put contracts on your types, you get a nice scaling
benefit, as you write the contract once, but the compiler
automatically inserts checks of the contract (assertions)
everywhere you modify variables of the type in a way that might
break the contract.

If your compiler is good, it will try to prove these automatically
inserted assertions at compile-time, and only keep those it
can’t prove.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introduction Subprogram Contracts

Type Contracts

Type Contracts: Ranges

The simplest kind of type contracts in Ada is the range:

subtype Natural is Integer range 0 .. Integer’Last;
subtype Positive is Integer range 1 .. Integer’Last;

You can declare ranges of numeric types and enumeration

types:
subtype Non_Negative_Float is Float
range 0.0 .. Float’Last;

type Months is (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);
subtype Winter is Months range May .. Oct;

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introduction Subprogram Contracts

Type Contracts

Type Contracts: Static Predicates

The next step up in complexity is the static predicate:

subtype Summer is Months
with Static_Predicate => Summer in Nov .. Dec |
Jan .. Apr;

This allows you to put constraints formulated as static set
conditions on your subtypes.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Introductiol

Subprogram Contracts
Type Contracts

Type Contracts: Dynamic Predicates

The most advanced form of type contract in Ada exists in two
forms. One is the public dynamic predicate:

subtype Prime is Integer range 2 .. Integer’Last
with Dynamic_Predicate
=> (for all N in 2 .. Prime - 1

=> Prime mod N /= 0);

Any kind of Boolean expression is allowed in a dynamic
predicate. You can even use one which changes with time:

subtype Past_Time is Ada.Calendar.Time
with Dynamic_Predicate => Past_Time < Clock;

subtype Last_Hour is Past_Time
with Dynamic_Predicate => Clock - 3600.0 <=
Last_Hour;

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Subprogram Contracts
Type Contracts

Type Contracts: Type Invariants

For private types with internal constraints, you use a type
invariant:

package Places is
type Disc_Point is private;
—-— various operations on disc points
private
type Disc_Point is
record
X, Y : Float range -1.0 .. +1.0;
end record
with Type_Invariant => Disc_Point.X *xx 2 +
Disc_Point.Y *% 2 <= 1.0;
end Places;

Adapted from the Ada 2012 Rationale.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprogre
Packages

Guidelines

| advise that you work on your contracts in this order:

@ Specify types.

@ Specify subprograms.

© Adapt the subprogram specifications based on use cases
for your package/library.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Make sure your type declarations are as detailed as possible.

@ Declaring a new type or a subtype depends on what level
of inter-type compatibility you want — and of course if there
is a type to derive from.

@ Put an appropriate constraint on the range of values the
(sub)type can have.

@ Add any extra constraints as predicates (non-private types)
or type invariants (private types).

The simpler a kind of contract you use to declare the type, the
more things you can use it for.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Types: Refining a Contract

Primes are integers:

subtype Prime is Integer;

... larger than 1:

subtype Prime is Integer range 2 .. Integer’Last;

... and have no other factors than 1 and the prime itself:

subtype Prime is Integer range 2 .. Integer’Last
with Dynamic_Predicate
=> (for all N in 2 .. Prime - 1

=> Prime mod N /= 0);

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Types: Contract Kinds and Usage

Subtypes of discrete types declared with ranges can be used
as array indices, while those declared with predicates or type
invariants can’t.

So when we declare the subtype Positive like this:

subtype Positive is Integer range 1 .. Integer’Last;

... then we can declare the array type st ring like this:

type String is array (Positive range <>) of Character;

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Types: Contract Kinds and Usage

Subtypes declared with ranges or static predicates can be used
in case statements, while those declared with dynamic
predicates or type invariants can’t.

So when we declare the seasons like this:

subtype Spring is Months range Mar .. May;
subtype Summer is Months range Jun .. Aug;
subtype Autumn is Months range Sep .. Nov;

subtype Winter is Months
with Static_Predicate => Winter in Dec | Jan | Feb;

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Subprograms
Packages

Types: Contract Kinds and Usage

... then we can use the seasons in a case statement like this:

case Input is
when Spring =>
Put_Line ("Light and warmer weather.");
when Summer =>
Put_Line ("Vacation and strawberries.");
when Autumn =>
Put_Line ("Wind and falling leaves.");
when Winter =>
Put_Line ("Snow - we hope.");
end case;

Jacob Sparre Andersen based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Subprograms

Make sure that you declare the arguments for your
subprograms as specifically as possible.

@ Select the proper direction (“in”, “out” or “in out”) for each
of the arguments to a subprogram.

@ Select as specific a (sub)type as possible for each of the
arguments to a subprogram.

@ Use pre-conditions (post-conditions) to declare stronger
constraints on the input (output) values than those implied
by the selected subtypes.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Subprograms: Refining a Specification

We want to be able to increment a counter by arbitrary steps.
We use (“in”) the value of both the counter and the step size to
generate (“out”) a new value for the counter:

procedure Increment (Counter : in out Integer;
Step : in Integer) ;

We count from zero and up (natural numbers). An increment is
by one or more (positive numbers):

procedure Increment (Counter : in out Natural;
Step : in Positive);

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Subprograms: Refining a Specification

There is an upper limit (Natural’Last) to how far we can count
with our selected type:
procedure Increment (Counter : in out Natural;

Step : in Positive)
with Pre => (Counter < Natural’Last) and

Once Increment returns Counter has changed:

procedure Increment (Counter : in out Natural;
Step : in Positive)
with Pre => (Counter < Natural’Last) and
(Step <= Natural’Last - Counter),
Post => (Counter > 0);

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines

Subprograms: Refining a Specification

What are the requirements of your subprograms?

@ Do some of your subprograms have some special
requirements, which should be met before they can be
called?

@ Can a subprogram only be called once?

@ Can a subprogram only be called when the system is in a
specific state?

This can be documented with appropriately formulated
pre-conditions to the subprograms.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Subprograms: Refining a Specification

If we want to write to a file, it should be open and writable:

procedure Put (File : in File_Type;
Item : in String)
with Pre => (Is_Open (File)) and then
(Mode (File) in Out_File | Append_File);

Initialise only once:

procedure Initialise
with Pre => State = Not_Initialised;

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Subprograms: Ideal Pre- and Post-conditions

In my view, the ideal pre- and post-conditions are simply
“A_Formal_Parameter in A_Subtype”, but there are cases

— such as the example on the preceding slide —

where the contracts necessarily have to be more complex than
that.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Packages

Ada doesn’t allow you to write contracts packages as such. It
still make sense to take a broader view of the all the contracts
in a package.

If one specifies contracts one subprogram at a time, one may
miss contract details on one subprogram, which would be
helpful for another subprogram.

The following slides contain a few guidelines for ensuring
consistent pre- and post-conditions for entire packages.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Packages: Aligning Pre- and Post-conditions

Do post- and pre-conditions match for likely sequences of calls
to the declared subprograms?

@ Identify use cases for the package (sequences of
subprogram calls).

@ For each call in a use case:

© \Verify that the documented state of the input data matches
constraints and pre-conditions for the called subprogram.

O If there is a mismatch: Attempt to narrow down the
documented, possible output values of the source of the
input data (by changing constraints and post-conditions).

O Identify the documented state of the modified parameters
after the call.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Types
Subprograms
Conclusion Packages

Packages: Aligning Pre- and Post-conditions

We look at a simple Text I/O package with some contracts

added:

procedure Open (File : in out File Type;
Mode : in File_Mode;
Name : in String);

procedure Close (File : in out File_ Type);

procedure Put_Line (File : in File_Type;
Item : in String)
with Pre => (Is_Open (File)) and then
(Mode (File) in Out_File | Append File),
Post => (Line (File) = Line (File)’0ld + 1);

Jacob Sparre Andersen ct-based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Packages: Aligning Pre- and Post-conditions

@ A use case:

Open (File => Target,

Name => "output.txt",

Mode => Out_File);
Put_Line (File => Target,

Item => "Hello.");
Close (File => Target);

9 @ Open.
@ Frile, Name and Mode all OK. No pre-conditions.
© (no mismatch)
@ Target can have any valid File_Type value.

Jacob Sparre Andersen based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Packages: Aligning Pre- and Post-conditions

9 @ Put_Line:
@ Pre-conditions on File not matched by the documented
constraints on Target. Item OK.
@ Target was last modified by Oopen, so we add some
appropriate post-conditions there:

procedure Open (File : in out File_ Type;
Mode : in File_Mode;
Name : in String)
with Post => (Is_Open (File) and
Text_IO0.Mode (File) =
Mode) ;

@ We now know that Target is open and has the mode
Out_File.

Jacob Sparre Andersen based Programming: a Route to Finding Bugs Earlier

Types
Guidelines Subprograms
Packages

Packages: Aligning Pre- and Post-conditions

e @ Close:
@ Close has no pre-conditions, so Target matches the
documented requirements for the formal parameter File.
© (no mismatch)
@ We know that Target has been changed, so it can have any
valid File_Type value.

As some of you may have noticed, | have omitted to document
that it is an error to open a file which already is open, or to
close one which already is closed. — This is left as an exercise.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Conclusion

Conclusion

@ Don’t disable unproven assertions.

@ It is possible to write your assertions centralised, and then
have the compiler insert them where it can’t prove that they
are not violated.

@ Don’t use more advanced contract notations than required
by your problem.

@ Use use cases for your packages to check if your contracts
are complete.

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

Contact information

Jacob Sparre Andersen

Jacob Sparre Andersen
JSA Research & Innovation
jacob@jacob-sparre.dk
http://www. jacob-sparre.dk/

Examples:
http://www. jacob—-sparre.dk/programming/
contracts/fosdem-2018-examples.zip

Jacob Sparre Andersen Contract-based Programming: a Route to Finding Bugs Earlier

http://www.jacob-sparre.dk/
http://www.jacob-sparre.dk/programming/contracts/fosdem-2018-examples.zip
http://www.jacob-sparre.dk/programming/contracts/fosdem-2018-examples.zip

	Introduction
	Subprogram Contracts
	Type Contracts

	Guidelines
	Types
	Subprograms
	Packages

	Conclusion

