
Do You Want to Retry?
Anton Marchukov

About Me
● Software Engineer at Red Hat.
● oVirt Community Infra team.
● CI and related infrastructure.
● Lot of automation in Python.
● DevOps advocate.

oVirt is free, open-source virtualization management
platform based on the KVM hypervisor.

About This Talk

● Follows a real story
● The battle is not over yet
● All simulations are reproducible

Your feedback will make it better. Try it yourself
and share:

https://github.com/marchukov/talk-network-retries

https://github.com/marchukov/talk-network-retries
https://github.com/marchukov/talk-network-retries

Why Do We Care? Overbooking in TCP/IP Networks

Occasional network “failures” are not failures, but “as designed” behaviour.

Why Do We Care? Rare is Not Always Rare

Success of k repetitions of n-parts chain:

Probability of n-parts chain success:

This “amplify” rare failures:

f n k S(k) ≈

0.000001 1 1 1

0.000001 100 1000 0.90
0.000001 100 10000 0.37

A spherical cow metaphor https://en.wikipedia.org/wiki/Spherical_cow. Cow image from http://abstrusegoose.com/406 under CC by-nc-sa license.

Chain with probability of failure of 1-part f:

https://en.wikipedia.org/wiki/Spherical_cow
http://abstrusegoose.com/406

Test Environment Setup (Virtual)

Test Setup: HTTP Server with Test JSON File

Now the test json file is exposed over HTTP: http://172.17.0.2/test.json

mkdir -p ~/tmp/webroot

vi ~/tmp/webroot/test.json # Put random json (around 7 KB)

docker run --name nginx-test -v ~/tmp/webroot:/usr/share/nginx/html:ro
--privileged -d nginx

docker inspect nginx-test | grep IPAddress # "IPAddress": "172.17.0.2",

http://172.17.0.2/test.json

Test Setup: Network UDP Probe Using netcat

Probe Sender
docker exec -i -t nginx-test apt-get -y install netcat
docker exec -i -t nginx-test bash -c 'cat /dev/urandom | nc -u
172.17.0.1 65535'

Probe Receiver
ip addr | grep docker0 # inet 172.17.0.1/16 scope global docker0
nc -l -u -p 65535 > /dev/null

Capturing with WireShark (dumpcap / tshark)
sudo dumpcap -i docker0 -w /tmp/traffic.pcap -s 100 -f 'host
172.17.0.2'

tshark -r /tmp/traffic.pcap -T fields -E separator=, -e _ws.col.Time -e
_ws.col.Length udp.port eq 65535 > naive_probe.csv

tshark -r /tmp/traffic.pcap -T fields -E separator=, -e _ws.col.Time -e
_ws.col.Length tcp.port eq 80 > naive_download.csv

Now we have CSV files we can load into Octave and play with
head -n 1 naive_download.csv
0.000000000,74
_ws.col.Time, _ws.col.Length

GET JSON: Naïve

import requests

URL = 'http://172.17.0.2/test.json'

r = requests.get(URL)
r.raise_for_status()

res = r.json()

Sampler: Repeat Module Method N Times

Run 100 times in a thread pool of 10 and output CSV statistics
./sampler.py 100 10 get_json naive_get > naive_get.csv

head -n 1 naive_get_json.csv
0,0.009381771087646484
0,0.0030426979064941406
0,0.002211332321166992
Success flag (0 - ok, 1 - error), run time in seconds

100 x 7 kB GET and Ideal Network

Simulation Scope and Strategy

Encapsulation diagram https://en.wikipedia.org/wiki/Internet_protocol_suite#/media/File:UDP_encapsulation.svg under CC-BY-SA license

1. Test HTTP GET request code
with NetEm simulated network.

2. All failures below Python will
look to us as:
a. Data coming
b. No data coming
c. We get an exception

3. No library hacking.

https://en.wikipedia.org/wiki/Internet_protocol_suite#/media/File:UDP_encapsulation.svg

Linux Network Emulator (NetEm)

Image from Hemminger S. "Network Emulation with NetEm", Open Source Development Lab, April 2005.
NetEm https://wiki.linuxfoundation.org/networking/netem
Man netem(8) (usually part of iproute2 package)

Current impairment capabilities:

● Delay
● Loss - we choose just this
● Corrupt
● Duplicate
● Reorder
● Rate

Applied to outgoing packets only.

https://wiki.linuxfoundation.org/networking/netem

Gilbert-Elliott Loss Model

From G.Hassingler, O.Hohlfeld. The Gilbert-Elliott Model for Packet Loss in Real Time Services on the Internet. Measuring, Modelling and Evaluation of
Computer and Communication Systems (MMB), 2008 14th GI/ITG Conference

Setting Up an Impairment Using tc
Inside our nginx container (that should run as privileged):

To add
sudo tc qdisc add dev eth0 root netem loss gemodel 50 20

To show
sudo tc qdisc show dev eth0
qdisc netem 8001: root refcnt 2 limit 1000 loss gemodel p 50% r 20% 1-h 100%
1-k 0%

To change when it is added previously
sudo tc qdisc change dev eth0 root netem loss gemodel 50 20

7 kB GET Run Overnight with Gilbert Loss (0.5, 0.2)

45 requests at first 600 sec then stucked. UDP was fine.

Missing Timeout: Great Way Not to Fail

And also do nothing over long period of time…

Note

timeout is not a time limit on the entire response download; rather, an exception

is raised if the server has not issued a response for timeout seconds (more

precisely, if no bytes have been received on the underlying socket for timeout

seconds). If no timeout is specified explicitly, requests do not time out.

Do you know your required Service Level?
Requests 2.11.1 documentation. Quickstart. http://docs.python-requests.org/en/latest/user/quickstart/#timeouts

http://docs.python-requests.org/en/latest/user/quickstart/#timeouts

45 Out of 100 Requests Managed to Finish

Showing requests within 95% percentile. They all finished within 60 seconds.

GET JSON: Less Naïve (with Timeout)

TIMEOUT = 60 # Seconds

r = requests.get(URL, timeout=TIMEOUT)

100 x 7 kB GET with G(0.5, 0.2) and Timeout 60 Sec

Does It Make Sense to Retry?

TCP retransmissions do work, but will not help with:

● HTTP specific failures (not simulated).
● Failures when connection is not established (e.g. DNS

errors, no route to host, etc).

74 request were lucky. We try luck more and increase our
success probability: P(A or B) = P(A) + P(B)

Is It Safe To Retry?
General case:

● Safe requests

● Idempotent requests

● Nothing happened

Our case:

● HTTP standard defines it. Requests uses
urllib3 library with retry for any RFC
compliant HTTP service.

Kevin Burke. A look at the new retry behavior in urllib3. https://kev.inburke.com/kevin/urllib3-retries/
What are idempotent and/or safe methods? REST Cookbook. http://restcookbook.com/HTTP%20Methods/idempotency/

Idempotence example

A = 1

def set_a(value):
 global A
 A = value

A # 1
set_a(2) # 2
set_a(2) # 2
set_a(2) # 2
… # 2

https://kev.inburke.com/kevin/urllib3-retries/
http://restcookbook.com/HTTP%20Methods/idempotency/

Retry Support in Python HTTP Libraries

Library Included? Retry? Comments

http Yes No

urllib Yes No Same for urllib2

urllib3 No Yes New behaviour merged on Jul 2, 2014. Best I’ve
found

requests No Yes Uses urllib3, does not yet expose all functionality

Your Library ? ?! Something to consider

GET JSON: with Retry

RETRY_PREFIX = 'http://' # Protocol to retry
MAX_RETRIES = 3 # Number of retries

session = requests.Session()
adapter = requests.adapters.HTTPAdapter(max_retries=MAX_RETRIES)
session.mount(RETRY_PREFIX, adapter)

r = session.get(URL, timeout=TIMEOUT)
r.raise_for_status()

res = r.json()

100 x 7 kB GET with G(0.5, 0.2) and 3 Retries

100 x 7 kB GET with G(0.5, 0.2) and 3 Retries

Let’s See What It Does: Enable Protocol Debug
import http
import logging

logging.basicConfig()
logging.getLogger().setLevel(logging.DEBUG)

http.client.HTTPConnection.debuglevel = 1

requests_logger = logging.getLogger('requests.packages.urllib3')
requests_logger.setLevel(logging.DEBUG)
requests_logger.propagate = True

Switch Off The Network in Test Environment

sudo tc qdisc change dev eth0 root netem loss gemodel 50 20 100 100
sudo tc qdisc show dev eth0
qdisc netem 803c: root refcnt 2 limit 1000 loss gemodel p 50% r 20% 1-h 100%
1-k 100%

Now let’s see how retry works.

Gilbert-Elliott model with loss probability in bad B state 1 - k = 1

This makes 100% loss in both states - no network at all.

Does Not Look Like It Works At All...
./get_json.py

DEBUG:requests.packages.urllib3.util.retry:Converted retries value: 3
-> Retry(total=3, connect=None, read=None, redirect=None)
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP
connection (1): 172.17.0.2
...
OSError: [Errno 113] No route to host

... and more tracebacks below … but no traces of any new
connection attempts

urllib3 Retry Object (Encapsulates HTTP Retry Behaviour)

retries = Retry(connect=5, read=2, redirect=5)
http = PoolManager(retries=retries)
response = http.request('GET', 'http://example.com/')

Kevin Burke. A look at the new retry behavior in urllib3. https://kev.inburke.com/kevin/urllib3-retries/
urllib3.util.retry documentation. http://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html#module-urllib3.util.retry

total Total number. Takes precedence.

connect Errors raised before the request is sent.

read Errors are raised after the request was sent.

redirect How many redirects to perform.

https://kev.inburke.com/kevin/urllib3-retries/
http://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html#module-urllib3.util.retry

Is It Safe To Retry Using urllib3 Retry Object?

1. Disabled by default.
2. connect: did not reach remote server.
3. read: may have side-effects.
4. method_whitelist: idempotent:

DEFAULT_METHOD_WHITELIST = frozenset(['HEAD',
'GET', 'PUT', 'DELETE', 'OPTIONS', 'TRACE']).

5. status_forcelist: force a retry on status: Payload Too
Large, Too Many Requests, Service Unavailable.

urllib3.util.retry documentation. http://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html#module-urllib3.util.retry
urllib3.util.retry source code. https://github.com/shazow/urllib3/blob/master/urllib3/util/retry.py

http://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html#module-urllib3.util.retry
https://github.com/shazow/urllib3/blob/master/urllib3/util/retry.py

GET JSON: With Fixed Retry

MAX_RETRIES = 3 # Number of retries

session = requests.Session()
retry = urllib3.util.Retry(total=MAX_RETRIES,
 connect=MAX_RETRIES,
 read=MAX_RETRIES)
adapter = requests.adapters.HTTPAdapter(max_retries=retry)
session.mount(RETRY_PREFIX, adapter)

r = session.get(URL, timeout=TIMEOUT)

Still Does Not Work! Although Now It Does Retry
./get_json.py
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP
connection (1): 172.17.0.2
... skipped ...
Failed to establish a new connection: [Errno 113] No route to host',)':
/test.json
INFO:requests.packages.urllib3.connectionpool:Starting new HTTP
connection (2): 172.17.0.2
... skipped two more connection attempts ...
... skipped traceback …
OSError: [Errno 113] No route to host
... no more retries below. It just fails … and fails all attempts quite fast
in fact ...

Just Kidding. We Switched the Network Off

qdisc netem 803c: root refcnt 2 limit 1000 loss gemodel p 50% r 20% 1-h 100% 1-k 100%

But… Wait a minute…

Can it happen in real life too?

Yes.

Missing Backoff: Great Way to Retry and Do Not Retry

For backoff_factor=1: 0 1 2 4 8 ...
backoff_value = self.backoff_factor * (2 ** (consecutive_errors_len - 1))

urllib3.util.retry source code. https://github.com/shazow/urllib3/blob/master/urllib3/util/retry.py
Exponential Backoff And Jitter. AWS Architecture Blog. https://www.awsarchitectureblog.com/2015/03/backoff.html

https://github.com/shazow/urllib3/blob/master/urllib3/util/retry.py
https://www.awsarchitectureblog.com/2015/03/backoff.html

GET JSON: With Backoff Factor 25 sec (25% of Timeout)

BACKOFF_FACTOR = 25 # Seconds

retry = urllib3.util.Retry(total=MAX_RETRIES,
 connect=MAX_RETRIES,
 read=MAX_RETRIES,
 backoff_factor=BACKOFF_FACTOR)

adapter = requests.adapters.HTTPAdapter(max_retries=retry)

7 kB GET with G(0.5, 0.2), 3 Retries and Backoff

Read Timeout Exceptions: Handled and Unhandled
WARNING:requests.packages.urllib3.connectionpool:Retrying (Retry(total=2,
connect=3, read=2, redirect=None)) after connection broken by
'ReadTimeoutError("HTTPConnectionPool(host='172.17.0.2', port=80): Read
timed out. (read timeout=60)",)': /test.json

ERROR:root:ConnectionError(ReadTimeoutError("HTTPConnectionPool(host='
172.17.0.2', port=80): Read timed out.",),)
... skipped ...
 File "/usr/lib/python3/dist-packages/requests/models.py", line 737, in content
 self._content = bytes().join(self.iter_content(CONTENT_CHUNK_SIZE)) or
bytes()
 File "/usr/lib/python3/dist-packages/requests/models.py", line 667, in generate
 raise ConnectionError(e)

GET JSON: With Our Own Retry
MAX_RETRY = urllib3.util.Retry(...)
def attempt(url, retry=MAX_RETRY): # Retry() is immutable
 try:
 # … skipped session creation and passing retry to HTTPAdapter
 # this will create new connection pool per each call :-(
 r = session.send(req, timeout=TIMEOUT)
except MaxRetryError:
raise
 except ConnectionError as e:
 retry = retry.increment(req.method, url, error=e) # return a new Retry()
 retry.sleep() # backoff is happening here
 return attempt(url, retry=retry)
 return r
res = attempt(URL).json()

urllib3 Retry Object in Response
Previous code can retry at maximum:

MAX_RETRIES * MAX_RETRIES > MAX_RETRIES

Latest urllib3 (not yet requests) passes Retry() used as part of the response:

 try:
 # ... skipped ...
 adapter = requests.adapters.HTTPAdapter(max_retries=retry)
 # ... skipped ...
 except ConnectionError as e:
 retry = r.raw.retries if r else retry
 retry = retry.increment(req.method, url, error=e)

 urllib3.response.HTTPResponse:
● retries – last Retry that was used during the request.

urllib3.response.HTTPResponse documentation. https://urllib3.readthedocs.io/en/latest/reference/index.html#module-urllib3.response

https://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html#urllib3.util.retry.Retry
https://urllib3.readthedocs.io/en/latest/reference/index.html#module-urllib3.response

urllib3 Even Allows to Set Retry Per Request

 import urllib3

 retry = urllib3.util.Retry(...)
 http = urllib3.PoolManager(retries=retry, timeout=TIMEOUT)

 try:
 r = http.request('GET', url, retries=retry)
 except ...

7 kB GET with G(0.5, 0.2) and Our Own Retry

Still 1 Request Failed. Can We Do Even Better?

ERROR:root:object of type 'NoneType' has no len()

File "/usr/lib/python3/dist-packages/requests/models.py",
line 791, in json
 if not self.encoding and len(self.content) > 3:

GET JSON: Retry With Content Awareness
def attempt(url, retry=retry):
 try:
 # … skipped …
 r = session.send(req, timeout=TIMEOUT)
 r.raise_for_status()
 j = r.json()
 # DEMO ONLY. TypeError is too wide to handle here
 except (ConnectionError, TypeError) as e:
 retry = retry.increment(req.method, url, error=e)
 retry.sleep()
 return attempt(url, retry=retry)
 return j
res = attempt(URL)

7 kB GET with G(0.5, 0.2) and Content Aware Retry

Conclusion
1. We can emulate network good enough.
2. Testing on “localhost” network does not work.
3. Testing on local network also might not work.
4. Implementing a retry is not easy. Use existing solutions

when possible.
5. If you do your network library or protocol consider

standard retries built in.
6. But, provide users ability to customize and override based

on their use case.

And all this is possible!

Questions?

@martchukov

anton@marchukov.com

https://github.com/marchukov/talk-network-retries

https://twitter.com/martchukov
https://twitter.com/martchukov
mailto:anton@marchukov.com
mailto:anton@marchukov.com
https://github.com/marchukov/talk-network-retries
https://github.com/marchukov/talk-network-retries

