
Binary Analysis with angr

Or: VEX was a good idea

Who am I? Who are we? Who cares?

● Researchers at the University of California Santa
Barbara Seclab

● People interested in finding bugs in software
● People interested in publishing papers about finding

bugs in software
● CTF players
● People who want there to be a reasonable system for

performing static analysis and symbolic execution on
binary code

That system is
called angr

● The name “angr” is a pun on
VEX, since, you know, when
something is vexing it makes
you angry

● Made of many interlocking
parts to provide useful
abstractions for analysis

(at least, that’s the
system we built)

angr is a highly modular
Python framework that
performs binary analysis
using VEX as an
intermediate representation

Part 1: the pile of abstractions called angr

Interlocking part #1: PyVEX

PyVEX is a big FFI wrapper
around libVEX.

For any sort of analysis to
even start, we need to have
an IRSB and then be able to
look at it! PyVEX lets you
do this.

>>>> import pyvex, archinfo
>>>> bb = pyvex.IRSB('\xc3', 0,

archinfo.ArchAMD64())
>>>> bb.pp()
IRSB {
 t0:Ity_I64 t1:Ity_I64 t2:Ity_I64
t3:Ity_I64 t4:Ity_I64

 00 | ------ IMark(0x0, 1, 0) ------
 01 | t0 = GET:I64(rsp)
 02 | t1 = LDle:I64(t0)
 03 | t2 = Add64(t0,0x8)
 04 | PUT(rsp) = t2
 05 | t3 = Sub64(t2,0x80)
 06 | === AbiHint(0xt3, 128, t1) ===
 NEXT: PUT(rip) = t1; Ijk_Ret
}

Interlocking part #1: PyVEX

There are python classes
for each VEX struct, and
enums are represented as
strings.

Data is deepcopied out of
libVEX between lifts so we
don’t run afoul of the
memory management.

Technically independent of
libVEX, lifters can be
written in pure python! We
have written lifters for
AVR, MSP430, and Brainfuck.

>>>> bb.statements[3]
<pyvex.stmt.WrTmp object>
>>>> bb.statements[3].data
<pyvex.expr.Binop object>
>>>> bb.statements[3].data.op
'Iop_Add64'
>>>> bb.statements[3].data.args
[<pyvex.expr.RdTmp object>,
<pyvex.expr.Const object>]

Interlocking part #4: SimuVEX

Symbolic execution with IRSBs

Technically supports execution from many other sources
(plugin interface) but VEX was the first and is the
best-supported. Also it’s in the name.

The primary abstraction we get from
simuvex is the SimState, a
representation of program state at a
given time. The symbolic execution
process is one that produces
successors to SimStates, each
successor being a copy of its parent
with additional data and constraints

Contains symbolic
implementations of the
effects of:

● Statements
● Expressions
● Operations
● Clean helpers
● Dirty helpers

Interlocking part #4: SimuVEX

This is the part where we have to begin considering how we
model our environment. SimuVEX must also handle:

● Modeling memory and registers
● Syscalls
● Files and other data sources from outside the program
● Providing symbolic summaries (SimProcedures) of common

library functions

Interlocking part #2: Claripy

Allows us to move execution from
the domain of integers to anything
else we could possibly imagine!

The most important other domain is
symbolic bitvectors. This lets us
build up symbolic trees of
expressions over variables, add
constraints on their value, and
then solve for possible concrete
values they could take on. This
operation is backed up by z3.

Other domains are useful for
special kinds of static analysis!
See: abstract interpretation

>>>> import claripy
>>>> s = claripy.Solver()
>>>> a = claripy.BVS('a', 32)
>>>> s.add(a > 4)
>>>> s.add(a < 10)
>>>> s.eval(a, 10)
(9, 5, 7, 6, 8)

>>>> s.add((a + 1) % 2 == a / 2)
>>>> s.eval(a, 10)
ERROR: UNSATISFIABLE

Interlude: Symbolic
Execution Example

We’re gonna show how symbolic execution executes a program
and what we can do with that!

(these slides stolen from Every Single Angr Presentation Ever)

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State A

Variables

x = ???

Constraints

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State A

Variables

x = ???

Constraints

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10

State ABA

Variables

x = ???

Constraints

x >= 10
x < 100

State ABB

Variables

x = ???

Constraints

x >= 10
x >= 100

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State ABA

Variables

x = ???

Constraints

x >= 10
x < 100

Concretized ABA

Variables

x = 99

Interlocking part #3: CLE

● A binary loader.
● Very complicated.
● Not at all within the scope of this presentation.

BASICALLY, it provides the ability to turn an executable
file and libraries and turn them into a usable address
space.

(I would very much like to spend several hours talking about the challenges of
designing a generic binary loader interface and then implementing the
linux/windows/macos dynamic loaders on top of it, but that’s not why we’re
here today)

Interlocking part #5: angr

The analysis module! Ties
all the abstractions
together into a control
interface: the Project.

Allows convenient access to
symbolic execution and also
to several built-in
analyses that do a lot of
common tasks, like CFG
recovery, data-flow
analysis, etc.

Has a knowledge base to
accumulate analysis results

>>> import angr
>>> proj = angr.Project('./fauxware')
>>> cfg = proj.analyses.CFG()
>>> dict(proj.kb.functions)
{4195552L: <Function _init (0x4004e0)>,
 4195712L: <Function _start (0x400580)>,
 4195756L: <Function call_gmon_start
(0x4005ac)>,
 4195904L: <Function frame_dummy (0x400640)>,
 4195940L: <Function authenticate
(0x400664)>,
 4196077L: <Function accepted (0x4006ed)>,
 4196093L: <Function rejected (0x4006fd)>,
 4196125L: <Function main (0x40071d)>,
 4196320L: <Function __libc_csu_init
(0x4007e0)>,
 4196480L: <Function __do_global_ctors_aux
(0x400880)>}
>>> pg = proj.factory.path_group()
>>> pg.explore(find=0x4006ed)
>>> pg.found[0].state.posix.dumps(0)
'\x00\x00\x00\x00\x00\x00\x00\x00\x00SOSNEAKY
\x00'

https://github.com/angr/angr-doc/tree/master/examples/fauxware

That was a lot
angr is big and complicated, but a lot of care has been
taken to make it a stack of useful abstractions so that any
part of the binary analysis process can be easily
instrumented.

What can we do
with angr?

Analyze a lot of binaries

● Symbolic execution
● Built-in analyses: CFG,

BinDiff, Disassembly,
Backward-Slice, Data-Flow
Analysis, Value-Set
Analysis, etc

● Binary rewriting
● Type inference
● Symbolically-assisted

fuzzing (driller)
● Automatic exploit

generation
● Win 3rd place in the Cyber

Grand Challenge

A lot of people are using
angr for some reason!!

● > 100 people on #angr
on freenode

● > 100 people on
angr.slack.com

● Daily issues, pull
requests, and
discussion on github

● Patches have been
submitted and friends
have been made with
other open source
projects: z3, capstone,
unicorn engine, qemu

What can we do
with angr?

Build a community

And all this is because we can lift binary code to the VEX
IR and execute it symbolically!

Under the hood, pretty much every primitive
operation that angr does is a call into
SimuVEX to execute some code.

libVEX sure is great!

...but was it the only option?

Part 2: a brief summary of other analysis IRs

BAP - Binary Analysis Platform

BAP is developed by CMU for
their research. Most notably,
it powers Mayhem, which is
their bug-finding tool.

CMU research’s spinoff
company, ForAllSecure, used
Mayhem to win 1st place in
the Cyber Grand Challenge.

PROS

● Written in ocaml
● Written by people with a

solid theoretical
background

CONS

● Written in ocaml
● The IR is tied to the

larger analysis platform
● Only supports

x86/amd64/arm
● When we started angr in

2013, BAP was heavily
fragmented and very
difficult to use. Since
then it has been
completely rewritten.

REIL - Reverse Engineering Intermediate Language

REIL is a 2009 paper
describing an IR that is
ideal for binary analysis.

PROS

● Ideal for binary
analysis

CONS

● Doesn’t actually exist
● If you decide to write a

binary lifter, you will
spend three years
writing a binary lifter

https://static.googleusercontent.com/media/www.zynamics.com/en//downloads/csw09.pdf

LLVM - Low Level Virtual Machine

LLVM is the Clang IR. It is
wildly popular for program
analysis (as opposed to
binary analysis).

PROS

● Robust library
● Large community and body

of knowledge about how
to use it

CONS

● Designed for compilers,
cannot reason about e.g.
register allocation. The
parts of the LLVM
assembler that do this
are divorced from the
actual IR.

● No official lifter from
ANY binary format!
Various communities have
projects to do this for
x86, but not very well.

TCG - TinyCode (Generator)

This is the IR that qemu
uses internally to do its
translation, optimization,
and JIT compilation!

PROS

● Official lifter available
for TONS of languages

CONS

● Lifter is buried in the
depths of qemu

● We at one point burned out
one of our interns trying
to extract it into a
libTCG

● In the last few months,
someone has successfully
done this!

VEX - not sure what this stands for, if anything

PROS

● Official lifter implementation available!
● Supports tons of architectures (anything valgrind

supports)
● Designed for binary analysis and instrumentation
● Written in C
● Under active development
● Excellent ISA coverage for x86 and ARM

VEX - not sure what this stands for, if anything

CONS

● Designed for the valgrind use-case: dynamically
executing user-mode programs on a platform that could
natively run the guest code

● The actual intermediate representation is never
exported from the library

● There are approximately ten billion IROps and CCalls to
implement

● Not truly a single static assignment (SSA) IR

VEX is the only one where the cons aren’t showstoppers

Part 3: overcoming the problems with libVEX

We forked VEX
and made a lot of changes

to it

warning: this is the part
where things get really

technical

● Split LibVEX_Translate into
LibVEX_Lift and LibVEX_Codegen

● Made multiarch mode actually
work on all platforms (...sort
of)

● Add options to disable some
optimizations that are useful
for valgrind but death for
static analysis

● Remove restrictions that only
make sense for userland
programs

● Improve the meta-properties of
the IR that dynamic execution
ignores but static analysis
needs

● TONS more

We want to upstream all
these changes!

Let’s take a look!

https://github.com/angr/vex

for c in $(git log | grep commit | cut -d ' ' -f 2 | tac); do git show
--color=always $c | less -R; done

That was a lot
...that was actually way less than it could have been; I
spent the last two weeks cleaning up our three-year mess of
a commit history and packaging it into this series of thirty
meaningful patches.

Future ideas

● Remove CCalls entirely
● Thread-safety
● Make multiarch work from

big-endian hosts
● Support for more ISA

features that valgrind
doesn’t have to care about
(looking at you, x86
enter), including
supervisor instructions

● Undo that one commit from
a few weeks ago removing
support for the mips mfc0
instruction

● There are several
postprocessors in PyVEX
that should probably be
made into patches

Not urgent but sure would
be cool

Future ideas
VERY urgent

● Change indentation from
three spaces to
literally anything else

Licensing

libVEX is GPL. This is a little scary. We do not want angr
to be GPL, at least partially because the university wants
all our code to be BSD.

We believe that we have sufficiently insulated ourselves
from libVEX (e.g. by making PyVEX able to use any number of
lifter backends, of which libVEX is one), but this is a
little sketchy, since SimuVEX needs, for example, to be able
to enumerate all the IROps from libVEX.

This is a complicated legal issue - what parts of the VEX IR
are inherant to libVEX, and are thus governed by the terms
of the libVEX license? We don’t really want to find out.

We would greatly appreciate libVEX being re-licensed with a
runtime library exception similar to the one in glibc.

That’s pretty much it!
angr project

http://angr.io/
angr@lists.cs.ucsb.edu

Andrew Dutcher

@rhelmot

