
TPM2.0 practical usage

Davide Guerri - dguerri@fb.com
Production Engineer - Facebook London

Using a firmware TPM 2.0 on an embedded device

mailto:dguerri@fb.com

• what is a TPM?
• using TPM2.0 (on a Minnowboard Max/Turbot)
• a practical example

• generating a signing key on a TPM2.0
• signing a document
• verify a signature

Agenda
Trusted Platform Module 2.0: a practical example

What is a TPM?

• TPM stands for Trusted Platform Module
• specs written by the TCG

• AMD, Hewlett-Packard, IBM, Intel and Microsoft
• standardised in ISO/IEC 11889 (2009, TPM1.2)

• present in most computers, including embedded
platforms

• e.g. Microsoft mandated a TPM 2.0 for WM10

What is a TPM
Overview

• cryptographic processor
• not an accelerator!

What is a TPM
Overview

believe it or not, TPMs are slow "by design"

because of import/export restriction on cryptographic
technologies that some countries have

What is a TPM
Building blocks

I/O

Cryptographic processing
Non-volatile

storage

General-purpose
memory

(cs)RNG

Key generator

Hash Engine

Encryption Decryption Signature Engine

What is a TPM
TPM1.2 vs TPM2.0

Key generator

Hash generator

TPM1.2 TPM2.0
RSA 1024/2048

ECC P256/BN256RSA 1024/2048

SHA-1

SHA-1

SHA-256

*

*

Encryption Decryption
Signature Engine

digest + HMAC

• platform integrity (secure boot, trusted boot)
• is a computer platform in a trusted condition?
• incrementally, from power-on to OS is up and running

• disk encryption
• TPM stores and control access to the key

• DRM
• e.g. verify code signature

What is a TPM
TPM typical usage

• hardware (discrete) TPM
• physical component

• firmware TPM (fTPM)
• emulated TPM using an isolated HW environment

named Trusted Execution Engine (TXE)
• simulator

• software TPM in user space

What is a TPM
Types of TPM

Using TPM2.0

• IBM
• TPM simulator running on Linux (can be used with Intel TSS)
• source available on source forge
• no Resource Manager
• lots of tools

• Intel (undergoing some important improvements)
• developed on Github (more "open": PRs, etc...)
• TCP implementation of the RM (in-kernel aimed for 4.11)
• fewer tools

Software (x86)
Intel vs IBM TPM2.0-TSS (TPM software stack)- highlights

Hardware!
MinnowBoard Max / MinnowBoard Turbot

• dual Core Atom E3800 family Valleyview SoC
• 1.33 GHz / 1.46 GHz
• 2 GB DDR3 RAM
• Intel HD Graphics (up to 1920x1080)
• UEFI system firmware
• fTPM 2.0 (not enabled in the OEM firmware)

• ~150 € (used to be sold on Amazon)

A practical example

Using TPM2.0 Tools
Foreword

• using TPM2.0 tools for "real world" applications is not easy
• they don't use widely supported formats like PEM or DER

• but the TSSes provide an API (SAPI) that can be used in your
C/C++ apps, although the TCG spec is quite hard to digest

• let's see how to use the Intel tooling to do something useful
with a TPM2.0

Intel TPM2.0 Tools
What's needed

• enable fTPM in UEFI configuration settings (PTT for MBM/T)
• set up Linux (> 4.4 preferred) any recent distro will do

• flash it on a micro SD card
• install Intel TPM2.0-TSS (packages available for some distro)

• this includes the Resource Manager daemon
• install Intel TPM2.0-Tools

Create a signing key
Endorsement Key

~# tpm2_getpubek -H 0x81010000 -g 0x01 -f ek.pub

• Intel Tools won't allow creating a primary signing key
• we need to create an EK and use that to generate a AIK

• this will:
• generate a 2048 RSA (0x01) key pair
• store it in the NVM with handle 0x81010000
• export the public part in ek.pub

Create a signing key
Attestation Identity Key

~# tpm2_getpubak -E 0x81010000 -k 0x81010010 \
-f aik.pub -n aik.name

• create an AIK with the EK just created

• generates a 2048 RSA key pair using the EK with handle
0x81010000

• stores it in the NVM with handle 0x81010010
• exports the public part in ak.pub
• ak.pub is in a format described by the TGC standard

Create a signing key
OpenSSL conversion

~# dd if=aik.pub of=modulus.bin bs=1 skip=102 count=256

• extract RSA modulus (skip TPMT_PUBLIC header)

~# echo 'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA'|\
 openssl base64 -a -d > header.bin
~# echo -en '\x02\x03' > mid-header.bin

• create the DER fixed header and mid-header

Create a signing key
OpenSSL conversion

~# echo -ne '\x01\x00\x01' > exponent.bin

• create the exponent (always 65537)

~# cat header.bin modulus.bin mid-header.bin \
exponent.bin > aik-pub.der

• compose the DER key!

Signing a document
OpenSSL conversion

~# tpm2_hash -H e -g 0x0B -I message.txt \
-o hash.bin -t ticket.bin

• create an hash from the document
• ticket.bin is used as a proof that the hash has been created

by this TPM

~# tpm2_sign -k 0x81010010 -g 0x0B -m message.txt \
-s sign.bin -t ticket.bin

• sign the hash

Verify a signature
OpenSSL conversion

~# openssl dgst -verify aik-pub.der -keyform der \
-sha256 -signature sign.raw message.txt

Verified OK

• verify the signature

~# dd if=sign.bin of=sign.raw bs=1 skip=6 count=256

• extract the "raw" signature

Thanks!

TPM2.0 Library specification
https://fb.me/tpm2-spec

Intel TPM2.0-TSS and Tools
https://fb.me/intel-tpm2-tss

https://fb.me/intel-tpm2-tools

enabling fTPM on MinnowBoard Max/Turbot
https://fb.me/ftpm-on-mbm

RSA signatures with TPM2.0 and OpenSSL
https://fb.me/tpm2-openssl

References

