sysbench 1.0: teaching an old dog new tricks
Alexey Kopytov

akopytov@gmail.com

mailto:akopytov@gmail.com

The early days (2004)

started as an internal project in High Performance
Group @ MySQL AB

the very first version written by Peter Zaitsev

| took over shortly after joining the team

contained SQL ("OLTP"), file, memory, cpu and
scheduler benchmarks

proved to be very useful in identifying performance
problems, troubleshooting customer issues, etc.

Growing complexity (2005-2006)

e |ots of internal feature requests (mostly from Peter)
e non-trivial inter-dependencies

e impossible to cover all possible use cases

e code unmaintainable by 2006

Can you add a
new option to
sysbench?

Let's make it scriptable!

e let users define workloads with a high-level API

e let sysbench do all the heavy lifting: threads,
statistics, random numbers, DB abstraction

e OLTP benchmarks rewritten as Lua scripts in

sysbench 0.5

Why Lua?

the "speed queen" of dynamic languages
designed to be embedded into C/C++ applications
simple and elegant, but powerful

Lua in 15 minutes:
https://learnxinyminutes.com/docs/lua/

https://learnxinyminutes.com/docs/lua/

SQL benchmarks in Lua

e predefined hooks called from C code

e API for SQL and random numbers/strings generation
written in C and used from Lua code

function prepare()
db query("CREATE TABLE t (a INT)"

)
db query("INSERT INTO t VALUES (1)")
end

function event()
db query("UPDATE t SET a = a + " .. sb rand(1l, 1000))
end
function cleanup()
db query("DROP TABLE t")
end

$ sysbench --test=test.lua prepare

$ sysbench --test=test.lua --num-threads=16 --report-interval=1 run
[ls] threads: 16, tps: 0.00, reads: 0.00, writes: 13788.65, response time: 1.43ms (95%)
[2s] threads: 16, tps: 0.00, reads: 0.00, writes: 14067.56, response time: 1.40ms (95%)

Development hiatus (2007-2015)

e sysbench worked well for a wide range of use cases
e used by many individuals, companies to benchmark
MySQL or for internal QA

o stopped active development after moving to MySQL
Development (and then Percona)

e reports about scalability issues on high-end
hardware starting from 2012

Restarted development (2016+)

e started working with sysbench again

e a major refactoring effort to address performance
Issues and functional limitations

e announced the start of the project in my blog, but
failed to report progress

e however...

1

Announcing sysbench 1.0:

the first release since 0.4.12 (~2006!)
closes issue #1 "Release of sysbench"
much better performance and scalability
improved command line syntax
extended SQL API
latency histograms
error hooks

report hooks
custom and parallel commands

Performance improvements

How to benchmark a benchmark utility?

e sysbench --mysqgl-dry-run

Single-threaded performance

Optimizations in 1.0:

e LuallT:
= faster Lua code execution]
» faster C calls with FFI y

2,000,000-

e optimized event loop

o faster PRNG (xoroshiro128+)) .-

e 3.44x faster than 0.4 oo
e 6.44x faster than 0.5

6,000,000 -

4,000,000-

0

threads

0.4

0.5

1.0

1

1789514

947123

6184301

4

1008154

1489174

19073059

16

895810

1508292

65444876

32

933098

1562345

91118515

64

1027856

1567786

91157330

128

1081680

1600286

89853314

256

1100908

1597260

89449255

512

1107764

1590471

88422934

1024

1102249

1534225

87745092

2048

1090127

1473032

84412932

Changes in 1.0:

e ConcurrencyKit

e NO Mutexes
e no shared counters

Scalability

TPS, POINT_SELECT dry-run transactions

n
o
-

100,000,000 -

10,000,000 -

1,000,000 -

—_

== 0.4
== 0.5

== 1.0

3'2 6|4
threads

1
128

I I
256 512 1024 2048

Command line syntax change

e sysbench 0.5:

$ sysbench --test=<path> [options...] command

e sysbench 1.0:

$ sysbench [<path>] [options...] [command]

or even:

#!/usr/bin/env sysbench
function event()

db_query("SELECT 1")
end

$ chmod +x mybench.lua

$./mybench.lua run

[1s] thds: 1 tps: 15295.05 gps: 15295.05 (r/w/o: 15295.05/0.00/0.00) lat (ms,95%): 0.09 err/s: 0.00
[2s] thds: 1 tps: 21934.19 gps: 21934.19 (r/w/o: 21934.19/0.00/0.00) lat (ms,95%): 0.06 err/s: 0.00
[3s] thds: 1 tps: 22785.35 gps: 22785.35 (r/w/o: 22785.35/0.00/0.00) lat (ms,95%): 0.06 err/s: 0.00
~C

Command line options

e problem with option validation in sysbench 0.5:
= no way for Lua scripts to declare supported
options

= all command line options are exported to Lua as
global variables

e default values were handled manually:

oltp table size = oltp table size or 10000
if (oltp create secondary == 'off') then

oltp create secondary = false
else

oltp create secondary = true
end

Command line options
e sysbench 1.0:

m scripts can declare their options, so sysbench can
validate them

sysbench.cmdline.options = {
tables = {"Number of tables", 1},
table size = {"Number of rows per table", 10000},

create secondary = {"Create a secondary key", true}

}

$ sysbench --tbales=8 mybench.lua run
invalid option: --tbales=8

$ sysbench mybench.lua help
mybench.lua options:

--table size=N Number of rows per table [10000]
--tables=N Number of tables [1]

e bundled OLTP Lua scripts declare their options,
respond to help command

Using C library with LuaJIT

e plain Lua (sysbench 0.5):

db query("SELECT 1")

os.execute("sleep 1")
db query("SELECT 2")
end

e LuaJIT + Foreign Functions Interface (sysbench 1.0)

» allows calling external C functions and using C data
structures from pure Lua code

db query("SELECT 1")

ffi.C.usleep(1000)
db query("SELECT 2")
end

New SQL API

function thread init()
drv = sysbench.sqgl.driver()
con = drv:connect()

end

function event()
con:query("SELECT 1")
end

function thread done()
con:disconnect()
end

e use LuaJIT FFI for better performance
e bundled OLTP scripts rewritten to the new API

New SQL API: multiple
connections per thread
e sysbench 0.5:

e sysbench 1.0:

New SQL API: results sets

e sysbench 0.5 discarded all results automatically

e processing results is required by some complex
benchmark scenarios (e.g. LinkBench)

e sysbench 1.0:

cl = sysbench.sqgl.driver():connect()
cl:query("CREATE TABLE t (a INT, b VARCHAR(255))")
cl:query([[INSERT INTO t VALUES (1, "foo"), (2, "bar")]])

rs = cl:query("SELECT * FROM t")
for i = 1, rs.nrows do
row = rs:fetch row()
print(row[l], row[2])
end

print(cl:query row("SHOW GLOBAL STATUS LIKE 'Handler read rnd next'"))

$ sysbench test.lua

1 foo

2 bar

Handler read rnd next 11718125

20.1

Latency histograms

ffi.cdef("int usleep(int microseconds);")

function event()
ffi.C.usleep(1000)
end

$ sysbench test.lua --events=100 --histogram run

Latency histogram (values are in milliseconds)

value ————————————- distribution —-———————————- count
1.044 |** 2
1.063 |********************************** 28
1.082 |** 33
1.102 |*************************** 22
1.122 |**************** 13
1.142 |** 2

General statistics:
total time: 0.1119s
total number of events: 100

Latency (ms):

min: 1.06
avg: 1.09
max: 1.16
95th percentile: 1.10
sum: 109.23

Error hooks

e problem: special handling for specific SQL errors
» restart transactions on deadlocks
= reconnect to out-of-sync cluster node
= route queries to another node
e solution in sysbench 0.5:
" ——mysqgl-ignore-errors=1213,1020

Error hooks

solution in sysbench 1.0:

= reconnect to same node on
ER UNKNOWN COM ERROR

function sysbench.hooks.sql error ignorable(err)
if err.sqgl errno == 1047 then

print ("Node is out of sync, waiting to reconnect...")
con:reconnect ()
return true
end
end

= reconnectto a new nodeon CR_SERVER LOST

function sysbench.hooks.sql error ignorable(err)
if err.sqgl errno == 2013 then

con = drv:connect()
return true
end
end

23.1

Custom commands

e sysbench0.4/0.5:
» predefined set: prepare, run, cleanup, help

e sysbench 1.0:

» scripts can define their own commands:

sysbench.cmdline.commands = {
prewarm = {cmd prewarm}

}

function cmd prewarm()
print("Loading sbtestl into buffer pool...")
db_query("SELECT AVG(id) FROM sbtestl FORCE KEY (PRIMARY)")

db_query("SELECT COUNT(*) FROM sbtestl WHERE k LIKE '%0%'")
end

$ sysbench mybench.lua prewarm

Loading sbtestl into buffer pool...

24 1

Parallel commands

e sysbench 0.4/ 0.5: all commands except run
executed in a single thread

e sysbench 1.0:

= can declare custom commands supporting
parallel execution:

sysbench.cmdline.commands = {
prepare = {parallel prepare, sysbench.cmdline.PARALLEL COMMAND}

}

function parallel prepare()
db query("CREATE TABLE sbtest" .. sysbench.tid .. "(a INT)");
db_query("INSERT INTO sbtest" .. sysbench.tid .." VALUES (...)")
end

25 .1

Custom reports

e standard human-readable reports in sysbench:

[8s] thds: 32 tps: 11580.79 gps: 232597.61 (r/w/o: 162993.88/46390.16/23213.57) lat (ms,95%): 4.10 err/s: 52

[9s] thds: 32 tps: 11703.11 gps: 234551.37 (r/w/o: 164282.69/46826.45/23442.23) lat (ms,95%): 3.96 err/s: 35
SQL statistics:

queries performed:

read: 1678180

write: 478000

other: 239239

total: 2395419
transactions: 119369 (11926.57 per sec.)
queries: 2395419 (239334.51 per sec.)
ignored errors: 501 (50.06 per sec.)
reconnects: 0] (0.00 per sec.)

General statistics:
total time: 10.0069s
total number of events: 119369

Latency (ms):

min: 1.42
avg: 2.68
max: 15.78
95th percentile: 4.10
sum: 319811.19

e hard to parse into a machine-readable format

Long-requested feature

e sysbench 1.0: hooks to print statistics in custom
formats
e example: CSV

function sysbench.hooks.report intermediate(stat)
local seconds = stat.time interval
print(string.format("%.0f,%u,%4.2f,%4.2f,%4.2f,%4.2f,%4.2f,%4.2f,%4.2f,%4.2£f",
stat.time total, stat.threads running,
stat.events / seconds, (stat.reads + stat.writes + stat.other) / seconds,
stat.reads / seconds, stat.writes / seconds, stat.other / seconds,
stat.latency pct * 1000, stat.errors / seconds, stat.reconnects / seconds))

$ sysbench test.lua --threads=32 --report-interval=1l run

1,32,12227.49,245589.45,172087.82,48972.82,24528.81,3.89,43.90,0.00
2,32,12580.84,252341.05,176742.96,50390.39,25207.70,3.68,44.01,0.00
3,32,12594.35,252761.04,177069.93,50451.40,25239.70,3.55,54.00,0.00
4,32,12377.77,248495.40,174108.78,49571.08,24815.54,4.03,57.00,0.00
5,32,12495.12,250733.49,175668.75,50026.50,25038.25,3.75,48.00,0.00
6,32,12451.92,249896.37,175062.86,49875.67,24957.84,3.96,53.00,0.00
7,32,12208.90,244758.96,171428.57,48874.59,24455.80,4.25,40.00,0.00
8,32,12109.62,243071.29,170291.57,48508.48,24271.24,4.25,50.99,0.00
9,32,12335.24,247441.91,173355.47,49365.96,24720.49,4.10,50.01,0.00

27 .

Custom reports: JSON example

function sysbench.hooks.report intermediate(stat)
local seconds = stat.time_ interval
print(string.format([[

{

"time": %4.0f,

},1], stat.time total, stat.threads running, stat.events / seconds,
(stat.reads + stat.writes + stat.other) / seconds, stat.reads / seconds,
stat.writes / seconds, stat.other / seconds, stat.latency pct * 1000,
stat.errors / seconds, stat.reconnects / seconds))

end

$ sysbench test.lua --threads=32 --report-interval=1l run

"time": 7
"threads": 32,
"tps": 12003.44,
"gps": {
"total"s: 240990.88,
"reads": 168816.22,
"writes": 48114.77,
"other": 24059.89,
b
"latency": 4.33,
"errors": 52.00,
"reconnects": 0.00

Custom reports

e store results in Prometheus/Graphite/etc.
e get custom perf. metrics from OS or MySQL server:

sysbench.hooks.report intermediate =
function (stat)
if con == nil then
con = assert(sysbench.sql.driver():connect())
end
sysbench.report default(stat)
name, avglat = con:query row([[
SELECT event name AS event, avg timer wait as avg_ latency
FROM performance schema.events waits summary global by event name
WHERE event name != 'idle'
AND sum_ timer wait > 0
ORDER BY sum timer wait DESC LIMIT 1;]1])
print("top wait event: "..name.." avg latency: "..avglat)
end

[1s] thds: 1 tps: 492.84 gps: 9869.74 (r/w/o: 6911.71/1971.36/986.68) lat (ms,95%): 2.35 err/s 0.00 reconn/s
top wait event: wait/io/file/innodb/innodb data file avg latency: 176826163

29 .1

Legacy Lua API

What about old scripts?

e "old" sysbench has been around long enough
e they will still work at least until the next major

release
o there are regression tests to verify legacy API is

functional

Help wanted!

e Unsupported drivers:
= Oracle RDBMS

= Drizzle
» |ibattachsql
e PostgreSQL driver: WANTED
= supported, but needs more WOF‘&EL PERS!
)

4

m———
—

Windows support
Supporting Windows:

e incomplete C99 supportin MSVC
e no supportin ConcurrencyKit
e but patches are welcome

The Future:

documentation
packaging

syslinkbench

MongoDB driver

MySQL X Protocol driver

Summing-up

sysbench 1.0 is the most significant milestone so far
hope it will be as useful for you as it is for me
https://github.com/akopytov/sysbench

these slides: http://kaamos.me/talks/fosdem17

Thank you! Questions?

K7

https://github.com/akopytov/sysbench
http://kaamos.me/talks/fosdem17

