
Extending Spark ML
Super Happy New Pipeline Stage Time!
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Built with 
public APIs*

*Scala only - see developer for details.



Who am I?
● My name is Holden Karau
● Prefered pronouns are she/her
● I’m a Principal Software Engineer at IBM’s Spark Technology Center
● previously Alpine, Databricks, Google, Foursquare & Amazon
● co-author of Learning Spark & Fast Data processing with Spark

○ co-author of a new book focused on Spark performance coming this year*

● @holdenkarau
● Slide share http://www.slideshare.net/hkarau 
● Linkedin https://www.linkedin.com/in/holdenkarau 
● Github https://github.com/holdenk 
● Spark Videos http://bit.ly/holdenSparkVideos 

http://www.spark.tc/
https://twitter.com/holdenkarau
https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.linkedin.com/in/holdenkarau
https://github.com/holdenk
http://bit.ly/holdenSparkVideos


What are we going to talk about?
● What Spark ML pipelines look like
● What Estimators and Transformers are
● How to implement a Transformer - and what else you will need to do to make 

an estimator
● I will of course try and sell you many copies of my new book if you have an 

expense account.



Spark ML pipelines
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● In the batch setting, an estimator is trained on a dataset, and 
produces a static, immutable transformer. 



So what does a pipeline stage look like?
Are either an:

● Estimator - no need to train can directly transform (e.g. HashingTF) (with 
transform)

● Transformer - has a method called “fit” which returns an estimator

Must provide:

● transformSchema (used to validate input schema is reasonable) & copy

Often have:

● Special params for configuration (so we can do meta-algorithms)

Wendy Piersall

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.Estimator
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.Transformer
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.Transformer


Walking through a simple transformer:
class HardCodedWordCountStage(override val uid: String) extends 

Transformer {

  def this() = this(Identifiable.randomUID("hardcodedwordcount"))

  def copy(extra: ParamMap): HardCodedWordCountStage = {

    defaultCopy(extra)

  }

Mário Macedo



Verify the input schema is reasonable:
 override def transformSchema(schema: StructType): StructType = {

    // Check that the input type is a string

    val idx = schema.fieldIndex("happy_pandas")

    val field = schema.fields(idx)

    if (field.dataType != StringType) {

      throw new Exception(s"Input type ${field.dataType} did not match 

input type StringType")

    }

    // Add the return field

    schema.add(StructField("happy_panda_counts", IntegerType, false))

  }



Do the “work” (e.g. predict labels or w/e):
 def transform(df: Dataset[_]): DataFrame = {

    val wordcount = udf { in: String => in.split(" ").size }

    df.select(col("*"),

      wordcount(df.col("happy_pandas")).as("happy_panda_counts"))

  }

vic15



What about configuring our stage?
class ConfigurableWordCount(override val uid: String) extends 

Transformer {

  final val inputCol= new Param[String](this, "inputCol", "The input 

column")

  final val outputCol = new Param[String](this, "outputCol", "The 

output column")

  def setInputCol(value: String): this.type = set(inputCol, value)

  def setOutputCol(value: String): this.type = set(outputCol, value)

Jason Wesley Upton



So why do we configure it that way?
● Allow meta algorithms to work on it
● If you like inside of spark you’ll see “sharedParams” for common params (like 

input column)
● We can access those unless we pretend to be inside of org.apache.spark - so 

we have to make our own

Tricia Hall



So how to make an estimator?
● Very similar, instead of directly providing transform provide a `fit` which 

returns a “model” which implements the estimator interface as shown above
● We could look at one - but I’m only supposed to talk for 10 minutes
● So keep an eye out for my blog post in November :)
● Also take a look at the algorithms in Spark itself (helpful traits you can mixin to 

take care of many common things).

sneakerdog



Resources to continue with:
● O’Reilly Radar (“Ideas”) Blog Post

http://bit.ly/extendSparkML

● High Performance Spark Example Repo has some sample “custom” models 
https://github.com/high-performance-spark/high-performance-spark-examples 

○ Of course buy several copies of the book - it is the gift of the season :p

● The models inside of Spark its self: 
https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/
spark/ml (use some internal APIs but a good starting point)

● As always the Spark API documentation: 
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.pac
kage 

● My Slide share http://www.slideshare.net/hkarau 

Captain Pancakes
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https://github.com/high-performance-spark/high-performance-spark-examples
http://bit.ly/highPerfSpark
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http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.package
http://www.slideshare.net/hkarau


Learning Spark

Fast Data 
Processing with 
Spark
(Out of Date)

Fast Data 
Processing with 
Spark 
(2nd edition)

Advanced 
Analytics with 
Spark

Coming soon: 
Spark in Action

Coming soon:
High Performance Spark

http://bit.ly/learning-spark-presentation
http://bit.ly/learning-spark-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/advanced-analytics-spark
http://www.manning.com/bonaci/
http://www.manning.com/bonaci/
http://www.highperformancespark.com


The next book…..

First seven chapters are available in “Early Release”*:
● Buy from O’Reilly - http://bit.ly/highPerfSpark
● Extending ML is covered in Chapter 9 :)
Get notified when updated & finished:
● http://www.highperformancespark.com 
● https://twitter.com/highperfspark

* Early Release means extra mistakes, but also a chance to help us make a more awesome 
book. 

http://bit.ly/highPerfSpark
http://www.highperformancespark.com
http://www.highperformancespark.com
https://twitter.com/highperfspark
https://twitter.com/highperfspark


k thnx bye :)

If you care about Spark testing and 
don’t hate surveys: 
http://bit.ly/holdenTestingSpark 

Will tweet results 
“eventually” @holdenkarau

Any PySpark Users: Have some 
simple UDFs you wish ran faster 
you are willing to share?:
http://bit.ly/pySparkUDF 

Pssst: Have feedback on the presentation? Give me a 
shout (holden@pigscanfly.ca) if you feel comfortable doing 
so :)

http://bit.ly/holdenTestingSpark
http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca

