
Extending Spark ML
Super Happy New Pipeline Stage Time!

kroszk@

Built with
public APIs*

*Scala only - see developer for details.

Who am I?
● My name is Holden Karau
● Prefered pronouns are she/her
● I’m a Principal Software Engineer at IBM’s Spark Technology Center
● previously Alpine, Databricks, Google, Foursquare & Amazon
● co-author of Learning Spark & Fast Data processing with Spark

○ co-author of a new book focused on Spark performance coming this year*

● @holdenkarau
● Slide share http://www.slideshare.net/hkarau
● Linkedin https://www.linkedin.com/in/holdenkarau
● Github https://github.com/holdenk
● Spark Videos http://bit.ly/holdenSparkVideos

http://www.spark.tc/
https://twitter.com/holdenkarau
https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.linkedin.com/in/holdenkarau
https://github.com/holdenk
http://bit.ly/holdenSparkVideos

What are we going to talk about?
● What Spark ML pipelines look like
● What Estimators and Transformers are
● How to implement a Transformer - and what else you will need to do to make

an estimator
● I will of course try and sell you many copies of my new book if you have an

expense account.

Spark ML pipelines

Tokenizer HashingTF String Indexer Naive Bayes

Tokenizer HashingTF Streaming
String Indexer

Streaming
Naive Bayes

fit(df)

Estimator

Transformer

● In the batch setting, an estimator is trained on a dataset, and
produces a static, immutable transformer.

So what does a pipeline stage look like?
Are either an:

● Estimator - no need to train can directly transform (e.g. HashingTF) (with
transform)

● Transformer - has a method called “fit” which returns an estimator

Must provide:

● transformSchema (used to validate input schema is reasonable) & copy

Often have:

● Special params for configuration (so we can do meta-algorithms)

Wendy Piersall

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.Estimator
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.Transformer
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.Transformer

Walking through a simple transformer:
class HardCodedWordCountStage(override val uid: String) extends

Transformer {

 def this() = this(Identifiable.randomUID("hardcodedwordcount"))

 def copy(extra: ParamMap): HardCodedWordCountStage = {

 defaultCopy(extra)

 }

Mário Macedo

Verify the input schema is reasonable:
 override def transformSchema(schema: StructType): StructType = {

 // Check that the input type is a string

 val idx = schema.fieldIndex("happy_pandas")

 val field = schema.fields(idx)

 if (field.dataType != StringType) {

 throw new Exception(s"Input type ${field.dataType} did not match

input type StringType")

 }

 // Add the return field

 schema.add(StructField("happy_panda_counts", IntegerType, false))

 }

Do the “work” (e.g. predict labels or w/e):
 def transform(df: Dataset[_]): DataFrame = {

 val wordcount = udf { in: String => in.split(" ").size }

 df.select(col("*"),

 wordcount(df.col("happy_pandas")).as("happy_panda_counts"))

 }

vic15

What about configuring our stage?
class ConfigurableWordCount(override val uid: String) extends

Transformer {

 final val inputCol= new Param[String](this, "inputCol", "The input

column")

 final val outputCol = new Param[String](this, "outputCol", "The

output column")

 def setInputCol(value: String): this.type = set(inputCol, value)

 def setOutputCol(value: String): this.type = set(outputCol, value)

Jason Wesley Upton

So why do we configure it that way?
● Allow meta algorithms to work on it
● If you like inside of spark you’ll see “sharedParams” for common params (like

input column)
● We can access those unless we pretend to be inside of org.apache.spark - so

we have to make our own

Tricia Hall

So how to make an estimator?
● Very similar, instead of directly providing transform provide a `fit` which

returns a “model” which implements the estimator interface as shown above
● We could look at one - but I’m only supposed to talk for 10 minutes
● So keep an eye out for my blog post in November :)
● Also take a look at the algorithms in Spark itself (helpful traits you can mixin to

take care of many common things).

sneakerdog

Resources to continue with:
● O’Reilly Radar (“Ideas”) Blog Post

http://bit.ly/extendSparkML

● High Performance Spark Example Repo has some sample “custom” models
https://github.com/high-performance-spark/high-performance-spark-examples

○ Of course buy several copies of the book - it is the gift of the season :p

● The models inside of Spark its self:
https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/
spark/ml (use some internal APIs but a good starting point)

● As always the Spark API documentation:
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.pac
kage

● My Slide share http://www.slideshare.net/hkarau

Captain Pancakes

http://bit.ly/extendSparkML
http://bit.ly/extendSparkML
https://github.com/high-performance-spark/high-performance-spark-examples
https://github.com/high-performance-spark/high-performance-spark-examples
http://bit.ly/highPerfSpark
https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/spark/ml
https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/spark/ml
https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/spark/ml
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.package
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.package
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.package
http://www.slideshare.net/hkarau

Learning Spark

Fast Data
Processing with
Spark
(Out of Date)

Fast Data
Processing with
Spark
(2nd edition)

Advanced
Analytics with
Spark

Coming soon:
Spark in Action

Coming soon:
High Performance Spark

http://bit.ly/learning-spark-presentation
http://bit.ly/learning-spark-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/advanced-analytics-spark
http://www.manning.com/bonaci/
http://www.manning.com/bonaci/
http://www.highperformancespark.com

The next book…..

First seven chapters are available in “Early Release”*:
● Buy from O’Reilly - http://bit.ly/highPerfSpark
● Extending ML is covered in Chapter 9 :)
Get notified when updated & finished:
● http://www.highperformancespark.com
● https://twitter.com/highperfspark

* Early Release means extra mistakes, but also a chance to help us make a more awesome
book.

http://bit.ly/highPerfSpark
http://www.highperformancespark.com
http://www.highperformancespark.com
https://twitter.com/highperfspark
https://twitter.com/highperfspark

k thnx bye :)

If you care about Spark testing and
don’t hate surveys:
http://bit.ly/holdenTestingSpark

Will tweet results
“eventually” @holdenkarau

Any PySpark Users: Have some
simple UDFs you wish ran faster
you are willing to share?:
http://bit.ly/pySparkUDF

Pssst: Have feedback on the presentation? Give me a
shout (holden@pigscanfly.ca) if you feel comfortable doing
so :)

http://bit.ly/holdenTestingSpark
http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca

