
How to fix Usually Slightly Broken

devices and drivers?

Krzysztof Opasiak

Samsung R&D Institute Poland

Agenda

USB basics

Plug & Play

Plug & do what I want

Plug & tell me more

Summary

Q & A

1

This presentation…

is about:

• USB

• USB devices

management

• USB drivers policy

modification

• USB traffic sniffing

is NOT about:

• Kernel code

debugging

• Using kgdb

• Using tracepoints

• Using JTAG

2

USB basics

What USB is about?

It's about providing services!

• Storage

• Printing

• Ethernet

• Camera

• Any other

4

Endpoints…

• Device may have up to 31 endpoints

(including ep0)

• Each of them gets a unique endpoint address

• Endpoint 0 may transfer data in both directions

• All other endpoints may transfer data in one

direction:

IN Transfer data from device to host

OUT Transfer data from host to device

5

Endpoint types

• Control

• Bi-directional endpoint

• Used for enumeration

• Can be used for application

• Interrupt

• Transfers a small amount of low-latency data

• Reserves bandwidth on the bus

• Used for time-sensitive data (HID)

6

Endpoint types

• Bulk

• Used for large data transfers

• Used for large, time-insensitive data

(Network packets, Mass Storage, etc).

• Does not reserve bandwidth on bus, uses whatever

time is left over

• Isochronous

• Transfers a large amount of time-sensitive data

• Delivery is not guaranteed (no ACKs are sent)

• Used for Audio and Video streams

• Late data is as good as no data

• Better to drop a frame than to delay and force a

re-transmission

7

USB device

8

USB descriptors

9

USB classes
00h Device Use class information in the Interface Descriptors

01h Interface Audio

02h Both Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

10h Interface Audio/Video Devices

11h Device Billboard Device Class

DCh Both Diagnostic Device

E0h Interface Wireless Controller

EFh Both Miscellaneous

FEh Interface Application Specific

FFh Both Vendor Specific

10

USB descriptors

11

USB device example

dmesg & lsusb

DEMO

12

Plug & Play

Step by step

• Plug in device

• Detect Connection

• Set address

• Get device info

• Choose configuration

• Choose drivers for

interfaces

• Use it ;)

14

Set address

• On plug-in device uses default address 0x00

• Only one device is being enumerated at once

• Hosts assigns unique address for new device

• Usually it's just the next one (dev.addr = addr++)

15

USB Device Details

16

Which configuration is the most suitable?

• Do we have enough power for it (bMaxPower)?

• Does it have at least one interface?

• If the device has only one config

• The first one!

• If the device has multiple configs

• The first one which first interface class is different

than Vendor Specific

• All interfaces of chosen configuration become

available so let's use them

17

What USB driver really is?

• Piece of kernel code (often a module)

• struct usb_driver

• Usually it provides something to userspace

(network interface, block device, tty, etc.)

• Implementation of some communication protocol

• …so it's a little bit equivalent of web browser, ssh

client etc.

18

How driver is chosen?

• Kernel has a list of registered drivers

• Each driver has an array of acceptable device IDs

• Kernel goes through the list and if some id

matches calls driver's probe()

• If driver is not ther udev may load it's module

based on alias

• Module aliases are generated based on

acceptable device IDs

19

USB device identity
struct usb_device_id {

/* which fields to match against? */
__u16 match_flags;

/* Used for product specific matches */
__u16 idVendor;
__u16 idProduct;
__u16 bcdDevice_lo;
__u16 bcdDevice_hi;

/* Used for device class matches */
__u8 bDeviceClass;
__u8 bDeviceSubClass;
__u8 bDeviceProtocol;

/* Used for interface class matches */
__u8 bInterfaceClass;
__u8 bInterfaceSubClass;
__u8 bInterfaceProtocol;

/*
* Used for vendor-specific
* interface matches
*/

__u8 bInterfaceNumber;

/* not matched against */
kernel_ulong_t driver_info;

};

#define USB_DEVICE_ID_MATCH_VENDOR 0x0001
#define USB_DEVICE_ID_MATCH_PRODUCT 0x0002
#define USB_DEVICE_ID_MATCH_DEV_LO 0x0004
#define USB_DEVICE_ID_MATCH_DEV_HI 0x0008
#define USB_DEVICE_ID_MATCH_DEV_CLASS 0x0010
#define USB_DEVICE_ID_MATCH_DEV_SUBCLASS 0x0020
#define USB_DEVICE_ID_MATCH_DEV_PROTOCOL 0x0040
#define USB_DEVICE_ID_MATCH_INT_CLASS 0x0080
#define USB_DEVICE_ID_MATCH_INT_SUBCLASS 0x0100
#define USB_DEVICE_ID_MATCH_INT_PROTOCOL 0x0200
#define USB_DEVICE_ID_MATCH_INT_NUMBER 0x0400

.

20

USB Host Big Picture

21

Plug & do what I want

Automation is good…

…but not always:

• Too many devices allowed

• Only part of device functionality is needed

• Wrong config chosen

• No matching driver found

• Wrong driver bound

23

What kernel gives us?

• SysFS infrastructure

• Device Information

• Device Management

• Drivers Information

• Device node

• Device Information

• Device Communication

• Used by libusb

24

/sys/bus/usb/devices/ demystified

• usbX
X ID of host controller on

your machine

• X-A.B.C
X HCD ID (as above)

A.B.C Physical path to port

where your USB device

is connected

• X-A.B.C:Y.Z
X-A.B.C Device path (as above)

Y Active configuration

Z bInterfaceNumber

25

Limit number of allowed devices

• Let's use USB Device Authorization!

• Each USB device has authorized attribute in sysfs

directory

• Each HCD (usbX) has authorized_default attribute
• If authorized == 0 then device is left in

unconfigured state

• When authorized, drivers probed automatically

• Can be automated using usbguard project

26

Device Authorization HOWTO

Choose USB bus
$ cd /sys/bus/usb/devices/usb$X

Stop authorizing devices by default
$ echo 0 > authorized_default

Connect new device, do other stuff

Authorize device of your choice
$ cd /sys/bus/usb/devices/$DEV_DIR
$ echo 1 > authorized

27

Use only subset of functionality

• Let's use USB Interface Authorization! (v4.4+)

• Each USB interface has authorized attribute in

sysfs directory

• Each HCD (usbX) has authorized_default attribute
• If authorized == 0 then drivers are not allow to bind

• Driver probing has to be triggered manually after

authorization

28

Interface Authorization HOWTO

Choose USB bus
$ cd /sys/bus/usb/devices/usb$X

Stop authorizing devices by default
$ echo 0 > interface_authorized_default

Authorize interface of your choice
$ cd /sys/bus/usb/devices/$INTERFACE_DIR
$ echo 1 > authorized

Trigger driver search
$ echo -n $INTERFACE_DIR \

> /sys/bus/usb/drivers_probe

29

Change configuration

• Configuration is chosen by kernel

• Choice is based on hardcoded heuristic

• But we may change it:

$ cd $DEV_DIR

Check current config
$ cat bConfigurationValue
1

Set new one
$ echo $NEW_CONFIG > bConfigurationValue

30

Add device ID to driver

• Sometimes you get a device which is compatible

with another one…

• But has a little bit different VID:PID info

• This new VID:PID is not listed in driver's id table

• This means that your driver is not going to bind

to it:(

31

Dynamic IDs - formats

• VID+PID:

echo $VID $PID

• VID+PID+Intf Class:

echo $VID $PID $IntfClass

• VID+PID+Intf Class+dev_info:

echo $VID $PID $IntfClass $RefVID $RefPID

• All umbers interpreted as HEX!

32

Dynamic IDs - formats

• VID+PID:

echo $VID $PID

• VID+PID+Intf Class:

echo $VID $PID $IntfClass

• VID+PID+Intf Class+dev_info:

echo $VID $PID $IntfClass $RefVID $RefPID

• All umbers interpreted as HEX!

32

Dynamic IDs - handling

• Add new device ID

$ echo $VID $PID > \
/sys/bus/usb/drivers/$DRV_NAME/new_id

• Show the list of dynamic IDs

$ cat /sys/bus/usb/drivers/$DRV_NAME/new_id

• Remove previously added device ID

$ echo $VID $PID > \
/sys/bus/usb/drivers/$DRV_NAME/remove_id

33

Bind/Unbind particular interface

• Check which driver is bound

$ readlink \
/sys/bus/usb/devices/$INTERFACE_DIR/driver

• Unbind driver

$ echo -n $INTERFACE_DIR > \
/sys/bus/usb/drivers/$DRV_NAME/unbind

• Bind driver (device id must match)

$ echo -n $INTERFACE_DIR > \
/sys/bus/usb/drivers/$DRV_NAME/unbind

34

Let's try this

DEMO

35

Plug & tell me more

USB bus

• USB is a Host-controlled bus

• Nothing on the bus happens without the host first

initiating it.

• Devices cannot initiate any communication.

• The USB is a Polled Bus.

• The Host polls each device, requesting data or

sending data.

37

USB transfer vs transaction

• Transaction

• Delivery of data to endpoint

• Limited by wMaxPacketSize

• Transfer

• One or more transactions

• May be large or small

• Completion conditions

38

USB Request Block

• Kernel provides

hardware independent

API for drivers

• This API is

asynchronous

• URB is a kind of

envelope for USB data

struct urb {
struct list_head urb_list;

struct usb_device *dev;
unsigned int pipe;

int status;
unsigned int transfer_flags;
void *transfer_buffer;
u32 transfer_buffer_length;
u32 actual_length;

unsigned char *setup_packet;

void *context;
usb_complete_t complete;

};

39

Typical USB driver

Where?

• probe()

• disconnect()

• complete()

• related to other

subsystem

What?

• check device +

allocate resources

• release resources

• check status, get data,

resubmit

• depends on susbsys

40

Typical bugs?

• Missing descriptors

• No error path on missing entities

• No correct error handling in complete()

• Malformed packets

41

HW USB sniffers - Commercial

2850$

1400$

42

HW USB sniffers - Open Hardware

about 100$

43

USBMon

• Kind of logger for URB related events:

• submit()

• complete()

• submit_error()

• Text interface

• Binary Interface

• One instance for each USB bus

44

submit vs complete

• Data in URB buffer may is not always valid

• Validity depends on transfer results

• And on endpoint direction:

IN OUT

submit() NO YES

complete() YES NO

45

Good old friend Wireshark

46

Let's catch sth

DEMO

47

Summary

Summary

• USB descriptors are a device ID

• You can get them using lsusb

• Drivers declares list of compatible devices

• USB devices are manageable via SysFS:

• Change active config

• Add new device to driver

• Black list device

• Bind/Unbind driver

• Device/Interface authorization

• Drivers communicate using URBs

• In some cases USBMon can be used instead of

expensive HW analyzers

49

Q & A

Thank you!

Krzysztof Opasiak
Samsung R&D Institute Poland

+48 605 125 174

k.opasiak@samsung.com

51

	USB basics
	Plug & Play
	Plug & do what I want
	Plug & tell me more
	Summary
	Q & A

