
The Inner Workings of Securely Running User
Containers on HPC Systems

Singularity

Michael Bauer

About Me

Michael Bauer

@bauerm97 on GitHub
bauerm@umich.edu

What are Containers?

What is a Virtual Machine?
“In computing, a virtual machine (VM) is an emulation of a computer system.
Virtual machines are based on computer architectures and provide
functionality of a physical computer.”

Examples:

Pros Cons
● Run different OS on one set of

hardware
● Save money (e.g. buy one

laptop, have Windows, OSX,
and Linux)

● Easy maintenance

● Slower performance
● Memory/storage reqs.

What are containers?
● Similar goal as VMs
● No kernel emulation
● Not architecture level virtualization, but rather software

level

What does that mean?
● Don’t waste extra ~5% performance doing emulation
● Smaller footprint (~500 MB vs ~20 GB VM)
● Very small startup time interval (~1 s vs ~1 min VM)
● Multiple instances can share one “container image”

Who uses containers?

Containers for Scientific Computing

Why do we want containers in HPC?
● Escape “dependency hell”

● Local and remote code works identically every time

● One file contains everything and can be moved

anywhere

Environment Matters

Needs for HPC containers
● Any user can run containers without special

privileges (root)

● Integrate seamlessly into existing

infrastructure

● Portability between many systems

● Users created and provided containers (no

administrative oversight)

HPC container software can never touch root

What about Docker?
● Root level process spawns

containers as child
processes

● Integration into
infrastructure difficult
(e.g. must consider other
scheduler systems)

Singularity

Needs for HPC containers
● Any user can run containers without special

privileges (root)

● Integrate seamlessly into existing

infrastructure

● Portability between many systems

● Users created and provided containers (no

administrative oversight)

● Any container can be run by any user - same

user inside container and on host

● No workflow changes necessary to use

● Single .img file contains everything necessary

● Safe to run any container without screening its

contents

Singularity

Basic Usage of Singularity

Singularity Workflow
1. Create image file

$ sudo singularity create [image]
2. Bootstrap image

$ sudo singularity bootstrap [image] [definition.def]
3. Run image

$ singularity shell [image]
$ singularity exec [image] [/path/to/executable]
$ singularity run [image]
$./image

Singularity Workflow

https://asciinema.org/a/100297

https://asciinema.org/a/100297
https://asciinema.org/a/100297

Docker Integration

https://asciinema.org/a/101984

https://asciinema.org/a/101984
https://asciinema.org/a/101984

SLURM Integration
#!/bin/bash -l

#SBATCH --image=~/centos7/latest
#SBATCH -p debug
#SBATCH -N 64
#SBATCH -t 00:20:00
#SBATCH -J my_job
#SBATCH -L SCRATCH
#SBATCH -C haswell

srun -n 4096 ./mycode.exe # an extra -c 1 flag is optional for fully packed pure MPI with
hyperthreading

ALICE Tier 2 Use Case

GSI Green Cube
Darmstadt
Germany ALICE Detector LHC

Geneva
Switzerland

ALICE Tier 2: Problem
● Run ALICE jobs on ~2k jobs at any time
● Host machines run Debian 7.x kernel 3.16
● ALICE expects Scientific Linux 6 (SL6)
● Library incompatibilities cause frequent errors (much higher than

expected)

ALICE Tier 2: Pre-Singularity Solution
● Correct library versions mounted in Lustre
● SLURM job submission script alters $LD_LIBRARY_PATH to point to Lustre
● And maybe more?

Big Ugly Hack

ALICE Tier 2: Singularity Solution
● Package Scientific Linux 6 into container

● Modify SLURM submission script to run container

● No need to mount Lustre for access to library files

● Can test container locally before deploying to HPC

SLC6
Dockerfile

ALICE GitHub
Repository

Singularity
Build File

Import from
slc6-builder

Container

How does it work

How
● Installed as SUID binary owned by root

● All necessary files are mounted

● Hide inside namespaces when possible and requested

SUID Binary Security
● Make code possible for anybody to audit
● Function call to change eUID to 0
● Function call to change eUID to calling user UID
● Wrap actions that require root in these two calls

User Namespaces?
● Map UID on host : UID inside user namespace
● Looks and feels like root (mostly)
● Potentially breaks portability

If any user code gets executed as root user, the system
should be considered compromised.

Security and Singularity

Core Principles
1. Never run user code as real user root

2. Only use eUID 0 when necessary (escalate

and drop permissions accordingly)

3. Drop permissions and capabilities when

forking into new thread

http://jdfinley.com/important-papers/safe/

Isolation
● Bind mount image file into host’s filesystem
● Use chroot to move into the mounted image’s root filesystem
● Mount /dev/, /etc/hosts, etc… into container filesystem
● Use namespaces when possible and requested (e.g User, PID, etc…)
● No isolation of network means no extra network configuration
● Can use host’s physical devices inside container (e.g. IPoIB)

Security Cont.
● User invokes non-SUID Singularity binary, which in turn calls SUID binary.

Only non-SUID binary can run SUID binary
● singularity_priv_escalate() called to escalate privileges to eUID 0

singularity_priv_drop() called to drop privileges to eUID of calling user
● Only escalate privileges when necessary
● MS_NOSUID and O_CLOEXEC flags set when necessary

We are always looking for more
Collaborators!

A

Software

B

Software

