
FPGAs: Why, When, and How to use
them (with RFNoC™) – Pt. 1

Martin Braun, Nicolas Cuervo
FOSDEM 2017, SDR Devroom

 Very rough schematic:

 Let’s ignore the analog stuf

 FPGA sits closest to the ADC/DAC

 GPP is separated by some transport (USB, Ethernet, DMA FIFO,
or maybe it’s just on the same PCB)

Schematic of a typical SDR

Analog
Stuff ADC/DAC FPGA GPP

 Wikipedia: ‘an integrated circuit designed to be configured by a
customer or a designer after manufacturing – hence "field-
programmable"’

 In SDRs: Efectively a user-definable digital circuit between
ADC/DAC and the software

 Can be redefined “any time”, but will take down the circuitry
while doing so

 Typical clock rates: several hundred MHz (or more? Or less?)

 Remember these:

What is an FPGA?

1. Define your circuitry (shall it filter? Shall it generate UDP
packets? Shall it...)

2. Encode that in a format your FPGA toolchain understands
(Verilog, VHDL, graphical tools)

3. Synthesize to netlist + generate bitstream. A bitstream is a
binary representation of how the internals of the FPGA is
configured. Often proprietary formats.

4. Load bitstream onto FPGA, typically using dedicated pins.

How are FPGAs programmed?

 Can an FPGA run software? Well, it can, but only if you make it
look like a CPU. Let’s ignore that for now.

 If you can draw a digital circuit, it’ll usually work well on an
FPGA

 Multiple parallel circuits are also possible, and in fact one of the
strengths of FPGAs.

 Latency can be controlled on the order of clock cycles.

 These work well:
– FIR filters, FFTs, Neural Networks
– Control loops

 These not so much:

– Protocol handling, complex rulesets

What do we use FPGAs for?

(Source: https://github.com/Themaister/muFFT/blob/master/doxygen/fft.md)

 During “runtime”, the digital circuit can’t be easily replaced

 Building bitfiles can take a long time (depending on the tools,
design, and chip between a few seconds and several hours)

 If your FPGA is controlling peripherals, those will be disabled
while the FPGA is reprogrammed

Flexibility (or lack thereof)

(Source: Ettus Research USRP E310 Schematic
files.ettus.com/schematics/e310)

 Did you pay attention in school?

 Quick, what’s this equation as a digital circuit:

 Concepts may seem trivial if you’re an EE major, but there’s a
lot of concepts worth knowing (Types of flip flops, bus
arbitration, interface designs, memory architectures, …)

 What does this do?

Challenges: Digital Logic

(Source: https://en.wikipedia.org/wiki/Shift_register)

 The digital logic is only half of it

 What kind of constraints are relevant for our SIPO?

 Where did the clock come from? How fast is it?

 Will the FFs keep up?

 How long do I need to read the outputs?

 Is ‘Data In’ a pin? Are QN pins? Shouldn’t I connect reset lines?

Challenges: Circuit Magic

 Most likely, you’re leaving the safe, easy confines of running gcc
and clang

 You’re in for a treat! Good luck getting Vivado running on
Gentoo.

 Ever heard of TCL?

Challenges: Tools

 EDA Playground: Play around with Verilog in your browser

 Yosys, Icoboard: RPi, free software

 Xilinx, Altera have eval kits e.g. from Digilent

 USRPs will let you do SDR

Pointers

RF-Network-on-Chip()RFNoC

ToC

If you only remember one slide…

RFNoC is for FPGAs is what GNU Radio (currently) is for GPPs.

RFNoC GNU Radio
Provides Easy-to-use Infrastructure for SDR
applications

Handles Data Movement between blocks (AXI-Based) (Circular Buffers)

Takes care of boring and recurring tasks (Flow control,
 addressing,
routing)

 (R/W pointer up-
 dating, tag
handling…)

Provides library of blocks to get started (Growing) (Huge and well-
tested)

Works with GNU Radio Companion (Through gr-ettus) (Built-in)

Well-documented (Right?) (Right? RIGHT?)

Writes your blocks for you

▪ Simple in Theory: 200 MHz real-time, Welch's
Algorithm

▪ In practice: Several stumbling blocks. That’s the
problem RFNoC is trying to solve.

Example: Wideband Spectral Analysis

Highly parallelizable operations, basic math
=> Ideal to shift to FPGA

Transport: Overloaded

FPGA:
Underutilized

▪ RFNoC + GNU Radio: Work nicely together
▪ Ideal way to use and test RFNoC is with GNU Radio

▪ Data is passed between "domains" easily

Example: E310 + fosphor

RFNoC

GNU Radio Domain Crossing
Messages

RFNoC Architecture

User Application – GNU Radio

Crossbar

Ingress Egress Interface

USRP Hardware Driver

Radio Core

H
O

ST
 P

C
U

SR
P

FP
G

A

Computation
Engine

Computation
Engine

▪ Blocks are chosen when bitfile is generated

Device Configuration

Crossbar

Radio Core FFT FIR Demodulator

Crypto Core Compression
Decompression

Soft Processor
MicroBlaze

To Other RFNoC Capable Device

Anatomy of an RFNoC Block

Crossbar

FFT

FIFO FIFO

Packetizer

Your IP

Radio Core
Depacketizer

FIFO FIFO

RX DSP

AXI-Stream

RX Sample Data

To Host PC

TX DSP

DepacketizerPacketizer

▪ Blocks are separate entities
▪ Separate clock domain
▪ Optimized for developing separately

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	If you only remember one slide…
	Example: Wideband Spectral Analysis
	Running the example
	RFNoC Architecture
	Device Configuration
	Anatomy of an RFNoC Block

