
SatNOGS: An SDR-based Satellite Networked Open Ground Station Libre Space Foundation

Manolis Surligas February 4, 2017

SatNOGS in a nutshell

SatNOGS: Satellite Networked Open Ground Station

Manolis Surligas (LSF)

SatNOGS SDR Ground Station

February 4, 2017 2 /

SatNOGS in a nutshell

- Global network of ground stations
- Focus on receiving LEO satellite signals
- Open software and hardware
- Costs about 300 to 500 \$
- SDR enabled RF front-end for maximum flexibility

Manolis Surligas (LSF)

SatNOGS SDR Ground Station

SatNOGS in a nutshell

- LEO satellites can be observed only for few minutes per location
- A global network of ground stations can increase the observation time
- Data from the deployed ground stations are uploaded on the cloud for easy access
- Web Support for observations scheduling on ground stations with LOS with the target

< □ ▶ < /⊐ ▶ <

SatNOGS Rotator

< 🗆 > < 🗗 >

SatN**©**GS

Manolis Surligas (LSF)

SatNOGS SDR Ground Station

February 4, 2017 5 / 1

SatNOGS Rotator

SatN**©**GS

Manolis Surligas (LSF)

SatNOGS SDR Ground Station

February 4, 2017 6 / 3

The gr-satnogs GNU Radio module

- SatNOGS ships together with the gr-satnogs GNU Radio module
- Code available at https://github.com/satnogs/gr-satnogs
- Supports multiple SDR devices through the gr-osmocom module
- Responsible for capturing filtering and demodulating satellite signals

Manolis Surligas (LSF)

The gr-satnogs GNU Radio module

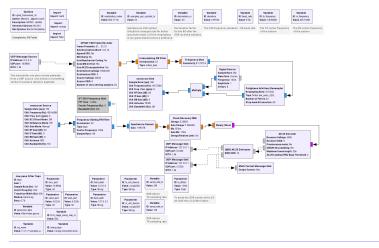
Can operate stand-alone

- Can be used also for satellite development, experimentation and debugging
 - UPSat success story :)
 - LibreSat-i follows!
- Runs on Linux (x86, ARM)
- Raspberry Pi 3 full support

< < >> < <</p>

gr-satnogs and UPSat

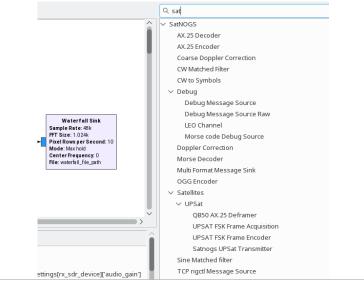
SatN**©**GS


SatNOGS SDR Ground Station

February 4, 2017 9 / 1

Manolis Surligas (LSF)

gr-satnogs and UPSat


-

UPSat transceiver flowgraph!

Satnogs			
		· · · · · · · · · · · · · · · · · · ·	୬ୡଡ଼
Manolis Surligas (LSF)	SatNOGS SDR Ground Station	February 4, 2017	10 / 18

The gr-satnogs GNU Radio module

SatN**G**GS

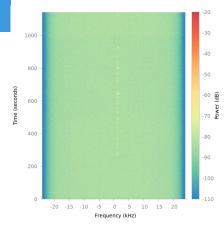
Manolis Surligas (LSF)

February 4, 2017

11 / 18

Doppler effect correction

- LEO communication channel suffers from large frequency offsets due to the Doppler effect
- The frequency offset changes constantly during the observation period
- Based on the satellite telemetry and transponder frequency, we compute the speed of the satellite and the frequency offset
- gr-satnogs incorporates two Doppler correction blocks:
 - Coarse: ${\sim}10$ corrections per second based on the trajectory ${\rightarrow}$ less CPU
 - Fine: ~1000+ corrections per second based on both trajectory and curve fitting → more CPU


Web integration

- *gr-satnogs* can operate with *satnogs-client* to upload satellite information on cloud
- The information that is uploaded includes:
 - An audible representation of the received signal in .ogg format
 - A waterfall plot image of the whole observation
 - Demodulated bit-stream if enough framing information about the satellite is available

< □ > < /**?** > < ⊒

Web integration

SatN**G**S

Manolis Surligas (LSF)

SatNOGS SDR Ground Station

February 4 2017 14

Automated Signal Detection

- Many of the satellite observations contain no data
- This can happen for many reasons:
 - Satellites often shutdown transceivers for energy saving
 - Or they shutdown their transponders during night
 - Outdated TLE
- *gr-satnogs* incorporates an automatic system to distinguish observations with signal presence

Latest Observation	ns Scheduled	Scheduled Observations			
ID Satellite		Frequency	Encoding	Timeframe	Observer
968 TIANWANG	1B (TW-1B)	437.645 MHz	GMSK4k8	2017-01-28 14:45:00 2017-01-28 14:56:00	Corey Shields
967 CUTE-1.7+	APD II (CO-65)	437.275 MHz	CW	2017-01-28 12:18:00 2017-01-28 12:31:00	Nikos Roussos
966 BY70-1		436.200 MHz	BPSK	2017-01-27 03:06:00	Corey Shields

Sat

Next Steps - Early Work

- MIMO SDR Receiver
- Add more satellites!

Manolis Surligas (LSF)

SatNOGS SDR Ground Station

February 4, 2017 16 /

MIMO SDR beam-forming for LEO satellites

- 2x2 Phased array can potentially replace SatNOGS rotator
- Quad Helix Antenna Elements pose an attractive option for the array
- MIMO beam-steering allows for concurrent reception of multiple satellites
- No moving parts

Manolis Surligas (LSF)

Join the hunt!

www.satnogs.org

SatN**©**GS

Manolis Surligas (LSF)

SatNOGS SDR Ground Station

February 4 2017 18

A I >
A I >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A