
The s6 
supervision suite

Laurent Bercot, 2017



What is an init system ?

- “init” is vague terminology. “init wars” 
happened because nobody had a clear 
vision on what an init system even is or 
should be.

- The 4 elements of an init system: /sbin/init, 
pid 1, process supervision, service 
management.

- Not necessarily in the same process.



Definition: process supervision

A long-lived process (daemon) is supervised 
when it’s spawned by the supervision tree, a 
set of stable, long-lived processes started at 
boot time by pid 1. (Often just pid 1.)
 Supervision is a good pattern: the service is 
stable and launched in a reproducible env.
 Supervision only applies to daemons.



Service management: definition
- Boot time: bring all services up
- Shutdown time: bring all services down
- More generally: change services’ states
Services can be oneshots (short-lived 
programs with side effects) or longruns 
(daemons). They have dependencies, which 
the service manager should enforce.



What features do “init”s offer ?
- Integrated init systems (systemd, launchd, 

upstart): “the big guys”. All four elements in 
one package, plus out-of-scope stuff.

- sysvinit, BSD init: /sbin/init, pid 1, 
supervision (/etc/inittab, /etc/gettys). Service 
manager not included: sysv-rc, /etc/rc

- OpenRC: service manager.
- Epoch: similar to sysvinit + sysv-rc



The “daemontools family”

- /etc/inittab supervision is impractical; nobody 
uses it for anything else than gettys.

- daemontools (DJB, 1998): the first project 
offering flexible process supervision. 
Realistic to supervise all daemons with it.

- daemontools-encore, runit, perp, s6: 
supervision suites.

- nosh: suite of tools similar to s6, in C++



Supervision suites are not enough

- Only ¼ of an init system. A full-featured init 
needs all 4 parts. (And nothing more.)

- runit provides /sbin/init and pid 1, but no 
service manager

- Void Linux uses runit without a service 
manager; it sometimes needs hacks 
(longruns doing nothing) to emulate oneshot 
services.



s6: a modern supervision suite

- Provides a (portable) pid 1.
- Provides hooks for service manager integration.
- There are two service managers designed to 

work with s6: anopa and s6-rc. They work on top 
of s6, not in the same layer.

- s6 is designed to be portable; /sbin/init cannot 
be. Script created by a system-specific program.



s6: technical aspects

- Design: modularity/layering done right.
- Design: s6-rc is a parallel service manager, 

with reproducible env even for oneshots.
- Portability: to any POSIX system.
- Pure C, all deps controlled, easy to bootstrap
- Uses notification; never polling.
- Lightweight: ~2 MB disk, negligible RAM/CPU.
- Very little code, short code paths



s6: availability and integration

- Packaged in all good distros - as 
mechanism, not policy.

- Used as pid 1 in Docker containers. 
s6-overlay predates s6-rc and anopa.

- Service manager integration requires joint 
work with the distribution.

- Plans to make s6 + s6-rc an alternative to 
busybox init + OpenRC in Alpine Linux.



s6: to learn more

http://skarnet.org/software/
skaware@list.skarnet.org
supervision@list.skarnet.org
Freenode IRC: #s6
Twitter: @laurentbercot
Or… come talk to me today or tomorrow!

http://skarnet.org/software/
http://skarnet.org/software/
mailto:skaware@list.skarnet.org
mailto:skaware@list.skarnet.org
mailto:supervision@list.skarnet.org
mailto:supervision@list.skarnet.org

