
BUILD	A	STEP	SEQUENCER
USING	PYTHON

WHO	AM	I?
Yann	Gravrand	(@ygravrand)

Techie
Musician

	

PART	1:	BACKGROUND
Musical	instruments
Synthetizers	and	samplers
Sequencers
Step	sequencers

MUSICAL	INSTRUMENTS
Can	be	played	by	humans

Some	can	be	"played"	by	computers:
Synthetizers
Samplers
...

	
uk.funzing.com

SYNTHETIZERS
Sound	generators
Lots	of	parameters	can	be	tweaked

FAMOUS	SYNTHETIZERS

Minimoog	(analog)

DX7	(digital)

FAMOUS	SYNTHETIZERS

Nord	Lead
(analog	modeling)

Mininova
(analog	modeling)

VST

VST	Plugins

SAMPLERS
Do	not	generate	sounds	themselves

Play	samples	(little	chunks	of	sound)

SAMPLES	/	NOTES:
One	sample	for	the	whole	keyboard	(pitch	adjusted	or	not)	

One	sample	for	each	note

One	sample	for	a	group	of	notes,	pitch	is	ajusted	

DRUM	MACHINES?
Sound	generator	(drum	oriented)	+	step	sequencer

TR	909

Tempest

SEQUENCERS
Play	a	sequence	of	notes
Several	tracks,	instruments...

STEP	SEQUENCER
A	4/4	measure	is	divided	into:

4	quarter	notes
Each	quarter	note	is	divided	into	4	steps	-->	A	sequence
like	this	is	16	steps	long

STEP	SEQUENCER
For	each	step,	we	define:

the	note	/	pitch
other	attributes:	length...
...	and	activate	it	or	not

EXAMPLES
Daft	punk	-	Aerodynamic	@	1:03

4	*	16-step	patterns

EXAMPLES
Daft	punk	-	Aerodynamic	@	2:28

4	*	16-step	patterns,	some	notes	off

USING	A	STEP	SEQUENCER
"Step	by	step"	mode:	for	each	step,	define	the	note
attributes.	No	timing,	no	rush
"Live"	mode:	turn	steps	on	and	off	in	real	time,	adjust	pitch,
length...

PART	2:	THE	PROJECT
Project	goals
MIDI
Using	mido
The	Dirty	Part:	blocking,	threads,	asyncio...

I	HAD

A	cool	synth

	

Colorful	(and	empty)	pads

AND

A	snake

PROJECT	GOALS
Make	the	synthetizer	play	notes	using	Python
Modify	and	turn	notes	on	/	off	to	create	a	sequence
Implement	"step	by	step"	and	"live"	modes
Change	tempo	in	real	time
Make	interactions	possible	with	any	controller...
...	Starting	with	mine,	of	course	:)
No	GUI,	focus	on	usability	with	hardware	(live	oriented)

MIDI:	MUSICAL	INSTRUMENT	DIGITAL	INTERFACE
Extremely	old	standard:	1983!
Still	largely	in	use	today
To	synchronize	and	communicate	between	devices
Message	types:

Notes	(NOTE	ON,	NOTE	OFF)
Control	Change	(Ex:	Filter	resonance,	Hold	pedal...)
Program	Change	(Change	instrument)
Sys	ex
...

WE	WILL	NEED	TO	SPEAK	MIDI	WITH	DEVICES

Midi	input:	pads	pressed,	keys	pressed,	knobs	turned...
Midi	output:	play	a	note,	turn	a	LED	on...

MIDI	INPUT:	RECEIVING	MESSAGES

Message	reception	blocks	

	
So	if	we	want	to	do	something	else	in	parallel,	we	have	to

handle	this	in	a	thread	or	coroutine	or...?

inport = mido.open_input()
msg = inport.receive() # Blocking call

MIDI	OUTPUT:	PLAYING	NOTES

-->	BEEEEEEEEEEEEEEEEEEEE...

-->	...	EEEP.

To	play	notes,	we	need	a	timer	between	NOTE_ON	and
NOTE_OFF	(note	duration).	time.sleep?

import mido

outport = mido.open_output()
msg = mido.Message('note_on', note=100, velocity=3)
outport.send(msg)

outport.send(mido.Message('note_off', note=100))

ALIGNING	NOTES	(STEPS)	WITH	TEMPO
Naive	implementation:

Two	problems:

time.sleep	also	blocks,	so	we	have	to	handle	it	in	a	thread

or	coroutine	or...
Waking	up,	sleeping	for	X	seconds,	waking	up...:	the	tempo
slowly	drifts.	Calculate	absolute	times

while True:
 outport.send(mido.Message(...))
 time.sleep(tempo.step_duration)

SOLUTIONS
Threads

Many	queues	to	avoid	shared	state
Coroutines	with	asyncio

Everything	in	a	single	thread,	less	concurrency	issues
Ok	since	our	app	is	I/O	bound
...But	we	have	to	modify	mido	to	insert
yield from	or	await...

Greenlets	with	gevent
Monkey	patches	time.sleep
so	we	can	use	mido	as	is	and	have	greenlets

PROPOSED	DESIGN

Main	process	is	I/O	bound
Console	process	is	CPU	bound!	

PART	3:	IMPLEMENTATION
&	DEMO

System	overview
Implementing	a	controller
Action!

SYSTEM	OVERVIEW

IMPLEMENTING	A	CONTROLLER
Map	messages	from	controller	(pad	pressed)	to	sequencer
actions	(toggle	step)
Send	messages	to	controller	for	feedback	(LEDs...)

INTERPRETING	EVENTS	FROM	CONTROLLERS
Some	events	are	represented	by	a	single	message
Others	are	the	result	of	a	sequence	of	messages	(ex:	NPRN
LSB,	MSB)
Solution:	a	RulesChain

Each	Rule	matches	a	message

A	state	automaton	keeps	track	of	the	matched	rules
Flexible	rules	evaluation	engine

self.register('FILTER',
 self.on_cc,
 RulesChain(Rule(type_='control_change', control='74'),
 Rule(type_='control_change', control='27',
 value='0'))
)

REACTING	TO	SEQUENCER	EVENTS
self.sequencer.on(SequencerEvents.STEP_BEGIN, self, self.on_step_begin)

...

def on_step_begin(self, step):
 # Turn on current step LED
 self.sequencer.output(self, *msb_lsb_output(60, 0, 32 + step.pos))

IN	ACTION!

IN	ACTION!

Bass	pattern
Drum	pattern	1
Drum	pattern	2
Mozart	pattern	(32-step	sequence)
Daft	punk	-	da	funk
Remote	console

WHY	PYTHON?
BENEFITS

Easy	to	read,	easy	to	write
The	dynamic	features	of	Python	and	plugin	system	make
writing	controllers	easy!
Large	ecosystem

CHALLENGES
Python	is	not	the	best	choice	for	real-time	computing
Performance	on	tiny	devices	(C.H.I.P,	Rpi...)

Steppy	was	designed	with	simplicity	in	mind	(gevent	/
single	thread	execution	model)
Implies	we	must	be	"green"	and	use	the	least	CPU
possible

WHERE	IS	MY	CPU?
Rules	evaluation	engine:

Speed	can	be	improved:	PyPy,	Cython,	Numba...?
Pretty	printing	(large	characters):

Isolate	on	a	core
Move	the	problem	-	using	Websockets!

FUTURE	PLANS
Chords	(especially	important	for	a	drum	machine...)
Multi	track
Load	/	save	to	midi
External	tempo	sync
Better	reactive	Web	interface
Web	interface	for	rules	config	(like	Live's	mappings)
Other	protocols:	DMX...

THANK	YOU!
@ygravrand

github.com/ygravrand/steppy

