BUILD A STEP SEQUENCER
USING PYTHON

WHO AM 17

Yann Gravrand (@ygravrand)

e Techie
e Musician

{\{ulll ; - " I 1‘4". P
URCTRIPTALIY 47
gy s prl /i

;:’ \
.\J\O TR |
 .?“{| L, ”UH‘“‘“M

. e o)
L ‘

PART 1: BACKGROUND

e Musical instruments

e Synthetizers and samplers
e Seguencers

e Step sequencers

MUSICAL INSTRUMENTS

e Can be played by humans

uk.funzing.co\r'ril
e Some can be "played" by computers:
m Synthetizers

m Samplers

SYNTHETIZERS

e Sound generators
e | ots of parameters can be tweaked

FAMOUS SYNTHETIZERS

Minimoog (analog

DX7 (digital

FAMOUS SYNTHETIZERS

|- R
|-zt N | | Nord Lead

UWN (analog modeling)

| Mininova

- - - me@@@@@@m

' : (anal deling)
: *I.lllllll.lll.llll.l.ll.llll B

'_

(=0 « BT » || Load bank | Save ba

FM-FOUR

e thess f VST Plugins

- AR

SAMPLERS

Do not generate sounds themselves

Play samples (little chunks of sound)

SAMPLES / NOTES:

e One sample for the whole keyboard (pitch adjusted or not)

One sample for each note

ic3 Cd
Audio Files Clap/Clap Groovin Zwawv

o =
o

-
L v e

Mame

Kick Groovin 4.wav
Clap Groovin 2.wav
Shaker Groovin 2.wav

|
P e

Shaker Steppa 2.wav =
Snare Groovin 4.wav
Kick Groovin 2.wav

Snare Groovin 1.wav OBATTERY B F e il bl == o

- . 2 1 ¥ ‘ 4 1] [|] L] s 1
ClosedHH Groovin 1. .0 st e 2k e .
1.0
0.8 " . o . Sea] [. ! - - .
0.6
o , T e e t
0.4
0.2 5 P e "
" ; - e - v -
0
2 [
* rl
.4 | it
.6
A a . a
DerdH Miirni d.vas s - 8 G
Vv Frnibous 2 Wedia ity Fagine Filiew) Comguessos T
400
" e o oo g Zat . (5
Enabled Remove Add... * gl = .)
Amad Mok Deiay o valamn Fa Duley
mdereoria -
.
(Y -. - -
tA Avmagl -

e One sample for a group of notes, pitch is ajusted

Violin G#2 Violin D3

NI

Qi 1Y e

DRUM MACHINES?

Sound generator (drum oriented) + step sequencer

TR 909

AHYTHM COMPOSER

Ses0000008
dCecece o o

ElﬂFJEI EIEIL'J[] EIDFIHEE] |
.-0 m._l‘
o = e e — e

: fﬁ

TEMPEST .. 2 1® 2 o
is .0 0 o o
B s I e R
& AT e i
® e e
=T=] o= = [empest

e
H =
§ : W
.=.- = :
§
.=.‘ n :

.f..l

SEQUENCERS

e Play a sequence of notes
e Several tracks, instruments...

STEP SEQUENCER

A 4/4 measure is divided into:

e 4 quarter notes
e Each quarter note is divided into 4 steps --> A sequence
like this is 16 steps long

STEP SEQUENCER

For each step, we define:

e the note/ pitch
e other attributes: length...
e ..and activate it or not

EXAMPLES

Daft punk - Aerodynamic @ 1:03
4 * 16-step patterns

EXAMPLES

Daft punk - Aerodynamic @ 2:28

4 * 16-step patterns, some notes off

USING A STEP SEQUENCER

e "Step by step” mode: for each step, define the note
attributes. No timing, no rush

e "Live" mode: turn steps on and off in real time, adjust pitch,
length...

PART 2: THE PROJECT

e Project goals

e MIDI

e Using mido

e The Dirty Part: blocking, threads, asyncio...

= A A0

.

| HAD

: |
e |

I — MININOVA 3 @mz. bf_:_ e : :
& w if'"-&":”:m L "@‘{ op ep) “i’i
D=0 @)) G) G)| A cool synth

- UALAALILY
B

TV ¥

I
e
mnm ! oooeooos Colorful (and empty) pads
L1 00000000 1]

- BEEE - BEN

PROJECT GOALS

Make the synthetizer play notes using Python

Modify and turn notes on / off to create a sequence
Implement "step by step"” and "live" modes

Change tempo in real time

Make interactions possible with any controller...

.. Starting with mine, of course :)

No GUI, focus on usability with hardware (live oriented)

MIDI: MUSICAL INSTRUMENT DIGITAL INTERFACE

Extremely old standard: 1983!

Still largely in use today

To synchronize and communicate between devices
Message types:

Notes (NOTE ON, NOTE OFF)

Control Change (Ex: Filter resonance, Hold pedal...)
Program Change (Change instrument)

Sys ex

WE WILL NEED TO SPEAK MIDI WITH DEVICES

Live

| Eﬂ&impy :

/ / T l \ T QUNED |

[M iNovA [: :::;.:J
WAL 000g0no

LAUNCH conTROL

e Midiinput: pads pressed, keys pressed, knobs turned...
e Midioutput: play a note, turn a LED on...

MIDI INPUT: RECEIVING MESSAGES

inport = mido.open_input()
msg = inport.receive() # Blocking call

So if we want to do something else in parallel, we have to
handle this in a thread or coroutine or...?

MIDI OUTPUT: PLAYING NOTES

import mido

outport = mido.open_output()
msg = mido.Message('note_on', note=100, velocity=3)
outport.send(msg)

--> BEEEEEEEEEEEEEEEEEEEE...

outport.send(mido.Message('note_off', note=100))

--> .. EEEP.

To play notes, we need a timer between NOTE_ON and
NOTE_OFF (note duration). time.sleep?

ALIGNING NOTES (STEPS) WITH TEMPO

Naive implementation:

while True:
outport.send(mido.Message(...))
time.sleep(tempo.step_duration)

Two problems:

e time.sleep also blocks, so we have to handle it in a thread

or coroutine or...
e Waking up, sleeping for X seconds, waking up...: the tempo
slowly drifts. Calculate absolute times

SOLUTIONS

e Threads
® Many queues to avoid shared state
e Coroutines with asyncio

m Everything in asingle thread, less concurrency issues
m Ok sinceour appis /0O bound
m . .But we have to modify mido to insert

yield from or awalit...
e Greenlets with gevent
= Monkey patches time.sleep
so we can use mido as is and have greenlets

PROPOSED DESIGN

STEP SCHEDULER NOTE SCHEDULER INPUTS CoNSolE
GREENLET GREENLET GREENLET PRoCETS
|
| slu 0 @"’f K[
@bf’ noh.P NOTE @m‘ =y | MESSAGE
. RUEVE v QUEUE
MAIN PRocESS [TH J

e Main process is |I/O bound
e Console process is CPU bound!

FID USEE FE NI VIRT FES SHE 5 ®CPU AMEM TIME+ COMMAND

T pi A 8 3812 153536 424 R 999 1.6 1:865.86 python
782 pi] rkcpey o (SO LS ntasid ol P e ey 5| 5 B I = LT R el |':I_':."t-|"I|:II"I

- - - T 4 - - - o S L F R | 14 -

PART 3: IMNPLEMENTATION

SYSTEM OVERVIEW

CoNTROLLER [RULES CHAIN L Rule (

FIN i

MININGVA {Q'}Uﬁ) j LAuNcd l STEPS J——*(STEP
| , (NTROL - | |

F—— Y 4

NJOTE

&

+ (S EQUENCER an’ SCHE‘DULER?

(INPU‘FS lﬁTEF S(,HEDULER}
oAy [Terepof

IMPLEMENTING A CONTROLLER

e Map messages from controller (pad pressed) to sequencer
actions (toggle step)
e Send messages to controller for feedback (LEDs...)

INTERPRETING EVENTS FROM CONTROLLERS

e Some events are represented by a single message

e Others are the result of a sequence of messages (ex: NPRN
LSB, MSB)

e Solution: a RulesChain
m Each Rule matches a message

m Astate automaton keeps track of the matched rules
m Flexible rules evaluation engine

self.reqgister('FILTER,
self.on_cc,

RulesChain(Rule(type_='control_change', control="74"),
Rule(type_='control_change', control="27",
value='0"))

)

REACTING TO SEQUENCER EVENTS

self.sequencer.on(SequencerEvents.STEP_BEGIN, self, self.on_step_begin)

def on_step_begin(self, step):
Turn on current step LED
self.sequencer.output(self, *msb_Isb_output(60, 0, 32 + step.pos))

IN ACTION!

IN ACTION!

Live

Q00D
[mon-py i::[;m 8335
/ / Tl \ QUNEO |

[HinINoVA [T qj
IERALILLE 0Ongono

LAUNCH conTROL

Bass pattern

Drum pattern 1

Drum pattern 2

Mozart pattern (32-step sequence)

Daft punk - da funk
Remote console

WHY PYTHON?

BENEFITS

e Easytoread, easy to write

e The dynamic features of Python and plugin system make
writing controllers easy!

e |arge ecosystem

CHALLENGES

e Python is not the best choice for real-time computing
e Performance on tiny devices (C.H.l.P, Rpi...)
m Steppy was designed with simplicity in mind (gevent /
single thread execution model)
m |mplies we must be "green" and use the least CPU
possible

WHERE IS MY CPU?

e Rules evaluation engine:

m Speed can be improved: PyPy, Cython, Numba...?
e Pretty printing (large characters):

m |solate on acore

m Move the problem - using Websockets!

FUTURE PLANS

Chords (especially important for a drum machine...)
Multi track

Load / save to midi

External tempo sync

Better reactive Web interface

Web interface for rules config (like Live's mappings)
Other protocols: DMX...

THANK YOU!

@ygravrand
github.com/ygravrand/steppy

_ S@P‘{ _

