

FOSDEM 2017, Brussels Victor Stinner

victor.stinner@gmail.com

How to run stable
benchmarks

In 2014, int+int optimization proposed:
14 patches, many authors

Is is faster? Is it worth it?

The Grand Unified Python Benchmark
Suite

Sometimes slower, sometimes faster

Unreliable and unstable benchmarks?

BINARY_ADD optim

Unstable benchmarks lead to bad
decisions

Patch makes Python faster, slower or…
is not significant?

Need reproductible benchmark
results on the same computer

Goal

WTF meter

CPU-bound microbenchmark:
python3 -m timeit 'sum(range(10**7))'

Idle system: 229 ms

Busy system: 372 ms (1.6x slower, +62%)
python3 -c 'while True: pass'

WTF?

System & noisy apps

System and applications share same
CPUs , memory and storage

Linux kernel isolcpus=3 don’t schedule
processes on CPU 3

Pin a process to a CPU:
taskset -c 3 python3 script.py

Idle system: 229 ms

Busy system, isolated CPU: 230 ms!

Isolated CPUs

Enter GRUB, modify Linux command line
to add: isolcpus=3

nohz_full=3: if only 0 or 1 process
running on CPU 3, disable all
interruptions on this CPU (WARNING: see
later!)

rcu_nocbs=3: don’t run kernel code on
CPU 3

NOHZ_FULL & RCU

April 2016, experimental change to
avoid temporary tuple to call functions

Builtin functions 20-50% faster!

But some slower benchmarks

20,000 lines patch reduced to adding
two unused functions... still slower.
WTF??

FASTCALL optim

Reference:

1201.0 ms +/- 0.2 ms

Add 2 unused functions:

1273.0 ms +/- 1.8 ms (slower!)

Add 1 empty unused function:

1169.6 ms +/- 0.2 ms (faster!)

Deadcode

Deadcode

Root cause: code placement

Memory layout and function
addresses impact CPU cache usage

It’s very hard to get the best
placement and so reproductible
benchmarks

Code placement

70% slower!

Profiled Guided Optimizations (PGO):

./configure --with-optimizations

(1) Compile with instrumentation

(2) Run the test suite to collect
statistics on branches and code paths
(hot code)

(3) Use statistics to recompile Python

PGO fix deadcode

Hash function randomized by default.

PYTHONHASHSEED=1: 198 ms

PYTHONHASHSEED=3: 207 ms (slower!)

PYTHONHASHSEED=4: 187 ms (faster!)

WTF???
Different number of hash collisions

Python hash function

Performance also impacted by:

Unused environment variables

Current working directory

Unused command line arguments
etc.

More fun

WTF????

First, I disabled Address Space Layout
Randomization (ASLR), randomizing
Python hash function, etc.

Lost cause: too many factors impact
randomly performances

timeit uses minimum: wrong!

Solution to random noise: compute
average of multiple samples

Average

New Python module: perf

Spawn multiple processes

Compute average and standard
deviation

perf

Everything was fine for days, until... the
new drama

Suddenly, a benchmark became 20%
faster

WHAT-THE-FUCK ?????

New drama

Since 2005, the frequency of Intel CPUs
changes anytime for various reasons:

Workload

CPU temperature

and… the number of active cores

Modern Intel CPUs

Turbo Button?

My laptop: 4 cores (HyperThreading)

2-4 active cores: 3.4 GHz

1 active core: 3.6 GHz (+5%)
sudo cpupower frequency-info

Disable Turbo Boost in BIOS, or write 1
into:
/sys/devices/system/cpu/
intel_pstate/no_turbo

Turbo Boost

I ran different benchmarks for days
and even for weeks

Everything was SUPER STABLE

And now?

Stable benchmarks!

But…

… one friday afternoon after I closed
my GNOME session

… the benchmark became 2.0x faster

WTF?????? (sorry, this one should
really be the last one… right?)

Nightmare never ends

Nightmare never ends

System and noisy apps: isolcpus

Deadcode, code placement: PGO
ASLR, Python hash function, env vars,
cmdline, ...: average + std dev

Turbo Boost: disable TB

Let me recall

CPU temperature?

CPU temperature?

nohz_full=3 (…) disables all
interruptions

intel_pstate and intel_idle CPU drivers
registers a scheduler callback

No interruption means no scheduler
interruption (LOC in /proc/interrupts)

CPU 3 Pstate doesn’t depend on
isolated CPUs workload, but other
CPUs workload

NOHZ_FULL and Pstate

intel_pstate and intel_idle drivers
maintainer never tried NOHZ_FULL

Linux real time (RT) developers: « it’s
not a bug, it’s a feature! »

 ⇒ Use a fixed CPU frequency

 ⇒ or: don’t use NOHZ_FULL

NOHZ_FULL and Pstate

Tune system to run benchmarks:
python3 -m perf system tune

Stop using timeit!
python3 -m timeit STMT

 ⇒ python3 -m perf timeit STMT

Use perf and its documentation!
http://perf.rtfd.io/

Takeaway

Before

After (with PGO)

Telco benchmark

http://perf.rtfd.io/

https://github.com/python/performance/

https://speed.python.org/

Questions?

Victor Stinner
victor.stinner@gmail.com

Collect metadata: CPU speed, uptime,
Python version, kernel task#, …

Compare two results, check if
significant

Stats: min/max, mean/median,
sample#, …

Dump all timings including warmup

Check stability, render histogram, …

Perf features

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

