Python
Winding Itself Around Datacubes

FOSDEM 2017, Brussels

Siddhart Shukla, Vlad Merticariu, Peter Baumann
Jacobs University | rasdaman GmbH
baumann@rasdaman.com

[co-funded through EU EarthServer-2]
BIG EARTH DATA
The Digitized Planet
Jacobs MSc in Data Engineering

Machine Learning – Big Data – Cloud Computing – Visualization – and more...

all-English, international campus – research involvement – strong industry connections
Roadmap

- Array Databases
- Python 1: OWSLIB
- Python 2: general array database backend
- Summary
Array Databases
Structural Variety in Big Data

- Stock trading: 1-D sequences (i.e., arrays)
- Social networks: large, homogeneous graphs
- Ontologies: small, heterogeneous graphs
- Climate modelling: 4D/5D arrays
- Satellite imagery: 2D/3D arrays (+irregularity)
- Genome: long string arrays
- Particle physics: sets of events
- Bio taxonomies: hierarchies (such as XML)
- Documents: key/value stores = sets of unique identifiers + whatever
- etc.
Structural Variety in Big Data

- arrays
- graphs
- arrays
- graphs
- arrays
- arrays
- sets
- hierarchies
- sets
- etc.
Structural Variety in Big Data

- sensor, image [timeseries], simulation, statistics data

- sets + hierarchies + graphs + arrays
A Brief History of Array Databases
create table LandsatScenes(
 id: integer not null, acquired: date,
 scene: row(band1: integer, ..., band7: integer) mdarray [0:4999,0:4999])

select id, encode(scene.band1-scene.band2)/(scene.nband1+scene.band2), „image/tiff“
from LandsatScenes
where acquired between „1990-06-01“ and „1990-06-30“ and
 mdavg(scene.band3-scene.band4)/(scene.band3+scene.band4)) > 0
rasdaman

= „raster data manager“: SQL+ n-D arrays
 - pioneer Array Database System
 - Scalable parallel “tile streaming” architecture
 - www.rasdaman.org

- Mature, in operational use
 - Ex: www.planetserver.eu
 - OSGeo Live

- OGC WCPS, ISO SQL/MDA blueprint
rasQL in a Nutshell

- **trimming & slicing**

  ```sql
  select a[ *:* , 100:200 , 10 ]
  from AvgLandTemp as a
  ```

- **result processing**

  ```sql
  select img * (img.green > 130)
  from NIR as img
  ```

- **search & aggregation**

  ```sql
  select mr
  from MRScan as mr , mask as m
  where some_cells( mr > 250 and m )
  ```

- **data format conversion**

  ```sql
  select encode( a[*:* , *:* , 10] , "png" )
  from AvgLandTemp as a
  ```
select
 encode(
 struct {
 red: (char) s.b7[x0:x1,x0:x1],
 green: (char) s.b5[x0:x1,x0:x1],
 blue: (char) s.b0[x0:x1,x0:x1],
 alpha: (char) scale(d.elev,20)
 },
 "image/png"
)
from SatImage as s, DEM as d
Linear Algebra Ops

- **Matrix multiplication**

\[
(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}
\]

```python
select marray i in [0:m], j in [0:p]
    values condense +
    over k in [0:n]
    using a [ i, k ] * b [ k, j ]
from matrix as a, matrix as b
```

- **Histogram**

```python
select marray bucket in [0:255]
    values count_cells( img = bucket )
from img
```
Architecture

Web clients (m2m, browser)

Internet

rasdaman

geo services

rasserver

File system
database

distributed query processing
No single point of failure

alternative storage
Adaptive Partitioning („Tiling“)

- Any tiling, canned into strategies [ICDE 1999]
 - 250+ TB datacubes

- rasdaman storage layout language [IEEE SSTDM 2010]

insert into MyCollection
values ...
tiling
 area of interest [0:20,0:40], [45:80,80:85]
tile size 1000000
index d_index storage array compression zlib
Parallel, Distributed Processing

1 query → 1,000+ cloud nodes
[ACM SIGMOD DanaC 2014]
[VLDB BOSS 2016]

select
 max((A.nir - A.red) / (A.nir + A.red))
- max((B.nir - B.red) / (B.nir + B.red))
- max((C.nir - C.red) / (C.nir + C.red))
- max((D.nir - D.red) / (D.nir + D.red))
from A@A, B@B, C@C, D@D
Science & GIS Tool Interfacing

- General-purpose scientist tools:
 - Java, C++
 - python, R (under work)

- Geo tools:
 - MapServer, GDAL, QGIS, OpenLayers, Leaflet, NASA WorldWind, ...

- Open Geospatial Consortium (OGC) Web Coverage Service (WCS) Core Reference Implementation
 - Can interface to all tools supporting OGC’s “Big Geo Data“ standards suite
Python 1: OWSLIB
OWSLIB

= OGC Web Services Library

- Support for WCS 2 added
 - Olly Clement, PML (Plymouth Marine Laboratory)
 - WCS requests (such as GetCoverage) from python
 - Status: Pull request to be generated soon

- Jupyter notebooks
 - Specifically, OGC WCS from python
 - Julia Wagemann, ECMWF (European Centre for Medium-Range Weather Forecast)
 - Status: Jupyter notebooks online, continuously expanded
Python 2: general array database backend

MSc thesis by Siddharth Shukla
Calling rasql from python: Take 1

- Goal: database access
- Basis: numpy, Google GRPC & protobuf
- First approach: call interface

```python
from rasdapy.core import Connection
con = Connection()
db = con.database("RASBASE")
txn = db.transaction()
q = txn.query("SELECT mr from mr")
res = q.eval()

# [[ . . . ] [ . . . ] [ . . . ]]
Calling rasql from python: Take 2

- **Goal:** transparent database access
- **Basis:** python magic methods
- **On top of CLI:** python operator overloading
  - Mark object as residing in database
- **Lazy evaluation:**
  - Collect operations on such object
  - Upon use, generate & execute query
  - Convert result to numpy array
- „Monkey patching“ python operations
  - Ex: „a+b“ in rasql → want database „a+b“ in python
    → overload __add__ magic function, also __radd__, etc.
Example

```python
>>> from rasdapy.core import Connection
>>> from rasdapy.surface import RasCollection
>>> con = Connection(hostname="127.0.0.1", port=7001)
>>> mr = RasCollection(con, "mr")
>>> mr = mr[100,150] # Array Subsetting
>>> mr += 1
>>> mr = mr ** 2 # Square of all elements
>>> mr = mr. filter (oid=2)
>>> mr.query
<RasQueryObject>
>>> str (mr.query)
"Select exp(mr[100,150]+1,2) from mr where oid(mr) = 2"
>>> arr = mr.eval ()
<RasArrayObject>
>>> arr.to_array () # Default conversion : Numpy Array
[[..., ...], [...], [...]]
```
Summary
EarthServer: Datacubes At Your Fingertips

- Agile Analytics on x/y/t + x/y/z/t Earth & Planetary datacubes
  - EU rasdaman + NASA WorldWind
  - 100s of TB sites now, next: 1+ Petabyte per cube

- Intercontinental initiative, 3+3 years:
  EU + US + AUS

- Global data federation
  - Access, extract, aggregate, combine any-size datacubes
  - Common basis: OGC WCS

www.earthserver.eu
OSGeo Thoughts: *Representing* Open Source?

- **Organizational Maturity:** Process definition & implementation, QM

- **Focus on Core Mission**
  - Should brand „good software“, not conquer project
  - „design by committee“ over „expert leadership“

- **Dogmatic „Software Communism“**
  - „all software free“ - why?
  - Large companies don‘t care, small companies vulnerable

→ Dangerous to small enterprises!
Conclusion

- Array databases for high-level queries on massive n-D arrays
  - QL is good c/s dev interface, but not for (sane) end users
  - rasdaman community: scalable array engine

- Goal: Python, common scientific interface, as gateway to array databases
  - QL transparent

- Status: beta release, to be finished

- See us:
  - www.earthserver.eu
  - www.rasdaman.org
  - www.jacobs-university.de/lsis