
Asynchronous programming with
Coroutines

in Python

Asynchronous programming
with Coroutines

in Python

Ewoud Van Craeynest

January 31, 2017

2

Table of Contents

introduction

asyncio in Python 3.4 (briefly)

asyncio in Python 3.5

summary

(extra slides)

3

Introduction

What is async programming for us today?

4

Introduction

What is async programming?

I writing concurrent applications 1

I without the use of threads or multiprocessing

I in a cooperative multitasking fashion

1not to be confused with parallelism5

Introduction

Not unique to Python

I many other languages also provide similar functionality

I .NET got credited by Guido

I Go, Dart, JavaScript, Scala, Clojure, Erlang, . . .

I but also Perl and Ruby

6

Introduction

Not unique to Python

I C++17 was rumoured to include it

I some talk about it on conferences

I but targetted for a new TS

I and hopefully C++20

7

Introduction
Blocking

A style of writing code

I that doesn’t use blocking calls
I but rather an event loop

I (that mustn’t be blocked)

8

Introduction
Blocking

What’s the issue with blocking api’s?

Why do we now dislike blocking?

9

Introduction
Blocking

What’s the issue with blocking api’s?

I your thread is ”busy”
I but not doing anything useful

I waiting for disk
I waiting for network/database
I waiting for serial port or other io

Why do we now dislike blocking?

I because now we have an alternative

10

Introduction
Threading

Isn’t that why threading exists?

Why do we now frown upon threads?

11

Introduction
Threading

Isn’t that why threading exists?

I yes, threads were designed for multitasking

I at operating system level

12

Introduction
Threading

Why do we now frown upon threads?

I context switches are expensive
I don’t scale well
I think large numbers of sockets (C10K)

I synchronisation is hard to get right
I unpredictable scheduling
I race conditions
I deadlock
I starvation

13

Introduction
Threading

Threads: the goto of our generation 2

I at least for concurrency

2doesn’t mean they can’t be useful if used correctly, like goto’s14

Introduction
Threading

In the multicore age

I for parallelism however

I threads (or multiprocessing) are still a must

15

Introduction
Threading

Threads no more?

I No!

I just less of them
I one thread for all connections

I i.s.o. one thread per connection

I one for all video stuff

I one for all screen io

I one for all . . .

16

Introduction
Non blocking calls

Circling back

I we want code not to block a thread

I because we want to do things concurrently

17

Introduction
Non blocking calls

Wait a minute . . .

Isn’t all code blocking in a way?

18

Introduction
Non blocking calls

Isn’t all code blocking in a way?

I indeed, but let’s make a distinction
I executing code, crunching data
I waiting for I/O operations to finish

I can’t do much about the first
I except parallelize

I but the second is the subject of our attention

19

Introduction
Non blocking calls

Non blocking I/O

I we want I/O code not to block a thread

I to do things concurrently

I we need new api’s

20

Introduction

Not so new

I turns out, those api’s, aren’t all that new

I Python has a long history of async programming

I though not in the way we know it now

21

Introduction
History

History of async programming api’s

I There where a few predecessors to what we got in Python3.5
I gevent (greenlets, c stack hack)
I tulip (now asyncio)
I twisted (event driven)
I tornado
I . . .
I all a bit hacked on top of Python2

I asyncio provisional package in 3.4

22

Introduction
History

Predecessors vs 3.5

I all rely on some form of select/poll loops

I so does Python asyncio

I but with nicer syntax

I supported from the language itself

I using new keywords

23

Introduction

Let’s take a look

24

asyncio
python 3.4

asyncio

I python 3.4 added asyncio 3

I Asynchronous I/O, event loop, coroutines and tasks

I this is where our story really starts

3get it from PyPI for Python 3.325

asyncio
provisional

provisional in 3.4

I It was, however, a work in progress

Note

The asyncio package has been included in the standard library on

a provisional basis. Backwards incompatible changes (up to and

including removal of the module) may occur if deemed necessary

by the core developers.

26

asyncio
coroutines

An example:

I note the @asyncio.coroutine decorator

I and yield from statement

first coroutine

@asyncio.coroutine

def print_hello():

while True:

print("{} - Hello world!".format(int(time())))

yield from asyncio.sleep(3)

27

asyncio
coroutines

coroutines

I are ”special” functions

I which can be suspended and resumed

first coroutine

@asyncio.coroutine

def print_hello():

while True:

print("{} - Hello world!".format(int(time())))

yield from asyncio.sleep(3)

28

asyncio
coroutines

new style

I using coroutines is considered ”new style” async
I though we now consider this example code ”old syntax”

I see Python 3.5 coroutines later on

new style, not newst syntax

@asyncio.coroutine

def print_hello():

while True:

print("{} - Hello world!".format(int(time())))

yield from asyncio.sleep(3)

29

asyncio
callbacks

coroutine api

I async code that does use coroutines
I needs a coroutine api
I like asyncio.open_connection and its return objects

coroutine api

@asyncio.coroutine

def tcp_echo_client(message, loop):

reader, writer = yield from asyncio.open_connection(’127.0.0.1’, 8888,

loop=loop)

print(’Send: %r’ % message)

writer.write(message.encode())

data = yield from reader.read(100)

print(’Received: %r’ % data.decode())

writer.close()30

asyncio in Python 3.5

asyncio in Python 3.5

31

asyncio in Python 3.5
new keywords

coroutines

I python 3.5 added new coroutine keywords

I async def and await

I removing the need for the @asyncio.coroutine decorator
and yield from

32

asyncio in Python 3.5
provisional

still provisional in 3.5 4

I The documentation has still the same note

Note

The asyncio package has been included in the standard library on

a provisional basis. Backwards incompatible changes (up to and

including removal of the module) may occur if deemed necessary

by the core developers.

4note is gone in Python3.6 docs33

asyncio in Python 3.5
coroutines

same examples

I using the new syntax async/await

new syntax

async def print_hello():

while True:

print("{} - Hello world!".format(int(time())))

await asyncio.sleep(3)

34

asyncio
coroutines

coroutines reiterated

I are ”special” functions

I which can be suspended and resumed

first coroutine

async def print_hello():

while True:

print("{} - Hello world!".format(int(time())))

await asyncio.sleep(3)

35

asyncio
event loop

event loop

I an event loop will take care of starting and resuming tasks

I but in turn, it claims the thread you’re on

running the event loop

loop = asyncio.get_event_loop()

loop.run_until_complete(print_hello()) # blocking!

36

asyncio
old style async

old style async

I not all async code uses coroutines
I in fact, many of the predecessors used callbacks

I triggered by certain events

async using callback

def process_input():

text = sys.stdin.readline()

n = int(text.strip())

print(’fib({}) = {}’.format(n, timed_fib(n)))

loop.add_reader(sys.stdin, process_input)

37

asyncio
callbacks

callback style async

I though used intensively in the past

I it escalates quickly in a cascade of callbacks and state
machines

I becoming a bit of a design anti-pattern in itself
I callback hell . . .

I but we didn’t really have another option

I and it did get us out of threading!

38

asyncio
callbacks

callback style async

I asyncio’s event loop supports scheduling regular callbacks
I using a fifo queue of registered callbacks

I in this case as soon as possible

async using callback

def hello_world(loop):

print(’Hello World’)

loop.stop()

loop = asyncio.get_event_loop()

loop.call_soon(hello_world, loop) # <--

loop.run_forever()

loop.close()
39

asyncio
callbacks

callback style async

I delayed callbacks are also possible
I call_later
I call_at

I event loop has own internal clock for computing timeouts

delayed async using callback

loop.call_later(0.5, hello_world, loop)

40

asyncio in Python 3.5
coroutines

same examples

I using the new syntax async/await with streams

new syntax

async def tcp_echo_client(message, loop):

reader, writer = await asyncio.open_connection(’127.0.0.1’, 8888,

loop=loop)

print(’Send: %r’ % message)

writer.write(message.encode())

data = await reader.read(100)

print(’Received: %r’ % data.decode())

print(’Close the socket’)

writer.close()41

asyncio in Python 3.5
coroutines

suspend on yield from

I coroutine will be suspended

I until open_connection has finished

coroutine api

reader, writer = await asyncio.open_connection(’127.0.0.1’, 8888,

loop=loop)

42

asyncio
coroutine api in Python 3.5

coroutine api

I also the objects returned by open_connection have
coroutines

I though only for what blocks
I write is documented not to block

I but we do want to suspend until read finishes

I without blocking the thread

coroutine api

writer.write(message.encode())

data = await reader.read(100)

43

asyncio
callbacks in Python 3.5

coroutine api

I written as if it where synchronous code

I no callbacks and keeping state

I but nonblocking with suspend and resume behaviour

coroutine api

async def tcp_echo_client(message, loop):

reader, writer = await asyncio.open_connection(’127.0.0.1’, 8888,

loop=loop)

print(’Send: %r’ % message)

writer.write(message.encode())

data = await reader.read(100)

print(’Received: %r’ % data.decode())

writer.close()44

asyncio in Python 3.5
coroutines api

coroutine api

I as with Python 3.4

I we need alternatives for all blocking api’s we might want to
use

I as usual Python comes with (some) batteries included

I additional batteries on PyPI

I though it must be mentioned that Twisted currently offers
more

45

asyncio in Python 3.5
coroutines api

batteries include:

I low level socket operations

I streams & connections

I sleep

I subprocess
I synchronisation primitives

I nonblocking, with coroutines

46

asyncio in Python 3.5
asyncio.org

asyncio.org

I lists PyPI libraries to use with asyncio
I things like:

I HTTP, ZMQ, DNS, Redis, memcache, Mongo, SQL, . . .
I REST, WebSockets, IRC, wsgi, Docker, . . .
I SIP, SSH, XMPP, SMTP, . . .
I files 5, queue, read-write lock
I pyserial, cron, blender

5workaround using threads47

asyncio in Python 3.5
asyncserial

asyncserial

I coroutine api for serial port

asyncserial example

async def foo():

port = asyncserial.AsyncSerial(’/dev/ttyUSB1’)

await port.write(somedata)

response = await port.read(5)

await some_handle_response(response)

48

asyncio in Python 3.5
aiozmq.rpc

aiozmq.rpc

I RPC mechanism on top of ZeroMQ using coroutines

RPC with coroutines

client = await aiozmq.rpc.connect_rpc(connect=’tcp://127.0.0.1:5555’)

ret = await client.call.get_some_value()

await client.call.start_some_remote_action(some_calc(ret))

await asyncio.sleep(42)

await client.call.stop_some_remote_action()

49

asyncio in Python 3.5
aiohttp

aiohttp

I HTTP using coroutines

I even with and for can use coroutines

aiohttp

async def fetch(session, url):

with aiohttp.Timeout(10):

async with session.get(url) as response:

return await response.text()

if __name__ == ’__main__’:

loop = asyncio.get_event_loop()

with aiohttp.ClientSession(loop=loop) as session:

html = loop.run_until_complete(

fetch(session, ’http://python.org’))

print(html)
50

asyncio in Python 3.5
coroutines

AsyncSSH

aiohttp

async def run_client():

async with asyncssh.connect(’localhost’) as conn:

stdin, stdout, stderr = await conn.open_session(’echo "Hello!"’)

output = await stdout.read()

print(output, end=’’)

await stdout.channel.wait_closed()

status = stdout.channel.get_exit_status()

if status:

print(’Program exited with status %d’ % status, file=sys.stderr)

else:

print(’Program exited successfully’)

asyncio.get_event_loop().run_until_complete(run_client())
51

asyncio in Python 3.5
blocking

blocking stuff

I blocking functions should not be called directly

I it will block the loop and all other tasks
I if no high level async API available

I run in executor, like ThreadPoolExecutor

blocking stuff in executor

await loop.run_in_executor(None, my_blocking_func, arg1, arg2)

52

asyncio in Python 3.5
coroutines

aiofiles

I file IO is blocking

I not easily made asynchronous
I aiofiles delegates to thread pool

I unblocking your event loop
I using the future mechanism

I discussion with Guido on GitHub about asynchronous files

blocking stuff behind the scenes

async with aiofiles.open(’filename’, mode=’r’) as f:

contents = await f.read()

53

asyncio in Python 3.5
testing

asynctest

I you’ll want to test coroutines
I but that requires a loop running

I loop aware test
I asynctest module

asynctest

import asynctest

import aiozmq.rpc

class MyRpcTest(asynctest.TestCase):

async def setUp(self):

self.client = await aiozmq.rpc.connect_rpc(

connect=’tcp://127.0.0.1:5555’)

54

asyncio in Python 3.5
testing

don’t write your unit tests this way!

asynctest testcase

async def test_some_remote_action(self):

cc = self.client.call

r = await cc.get_some_value()

self.assertGreater(someValue, r)

await cc.start_some_remote_action(some_calc(ret))

for _ in range(5):

await time.sleep(0.5)

newr = await cc.get_some_value()

self.assertGreater(newr, r)

r = newr

await cc.stop_some_remote_action()
55

asyncio in Python 3.5
testing

asynctest

I loop aware test
I ideally run unrelated tests concurrently on the same loop

I realistic?
I perhaps not

asynctest

import asynctest

56

asyncio in Python 3.5
testing

asynctest: other features

I ClockedTestCase
I allows to control the loop clock
I run timed events
I without waiting for the wall clock

I accelerated tests anyone?

asynctest

import asynctest

57

asyncio in Python 3.5
testing

asynctest: other features

I CoroutineMock

I FileMock

I SocketMock

asynctest

import asynctest.selector

58

asyncio in Python 3.5
testing

pytest-asyncio

I for those on pytest iso unittest

I haven’t tried it . . .

I claim custom event loop support

I monkey patching coroutines allowed

pytest-asyncio

@pytest.mark.asyncio

async def test_some_asyncio_code():

res = await library.do_something()

assert b’expected result’ == res

59

asyncio in Python 3.5
stopping loop

stopping the loop

I some applications might require stopping the loop

I basically any await statement is an opportunity for the loop
to stop

I it will warn you about unfinished scheduled tasks on the loop

stopping the loop

loop.stop()

60

asyncio in Python 3.5
stopping loop

cancelling a task

I sometimes not required to stop whole loop

I a single task might suffice

stopping the loop

sometask = loop.create_task(my_coroutine())

. . .

sometask.cancel()

61

asyncio in Python 3.5
stopping loop

threadsafety

I the whole thing isn’t threadsafe

I why would it ?

I so take precautions from other threads

stopping threadsafe

loop.call_soon_threadsafe(loop.stop)

loop.call_soon_threadsafe(sometask.cancel)

62

asyncio in Python 3.5
exceptions

exceptions

I raised exceptions from a coroutine

I get set on the internal future object

I and reraised when awaited on

exceptions

async def foo():

raise Exception()

async def bar():

await foo() # Exception time

63

asyncio in Python 3.5
exceptions

exceptions

I but if never awaited

I aka exception never consumed

I it’s logged with traceback 6

exceptions

async def foo():

raise Exception()

asyncio.ensure_future(foo()) # will log unconsumed exception

6Get more logging by enabling asyncio debug mode64

asyncio in Python 3.5
logging

logging

I asyncio logs information on the logging module in logger
’asyncio’

I useful to redirect this away from frameworks that steal stdin
and stdout

I like robotframework

65

asyncio in Python 3.5
alternatives

alternatives to asyncio

I as is to be expected . . .

I not everyone completely agrees on Python’s implementation

I and offer partial or complete improvement over asyncio

66

asyncio in Python 3.5
alternatives to asyncio

other loops

I we can use loops other than the standard one
I like uvloop 7

I a fast, drop-in replacement of asyncio event loop
I implements asyncio.AbstractEventLoop

I promises Go-like performance

I expect others . . .

uvloop

import asyncio

import uvloop

loop = uvloop.new_event_loop()

asyncio.set_event_loop(loop)

7https://github.com/MagicStack/uvloop67

asyncio in Python 3.5
alternatives

curio: an alternative to asyncio

I by David Beazly
I based on task queueing

I not callback based event loop

I not just the loop
I complete async I/O library

I sockets, files, sleep, signals, synchronization, processes, ssl, ipc
I interactive monitoring

I claims 75 to 150% faster than asyncio

I claims 5 to 40% faster than uvloop
I and about the same speed as gevent

68

asyncio in Python 3.5
alternatives

alternatives to asyncio

I I like standard stuff

I but benefits promised by others make them enticing . . .

69

summary

summary

70

summary

asynchronous programming

I concurrency without threading

I write suspendable functions

I as if it was synchronous code

71

summary

asynchronous programming

I with callbacks in any version

I with @asyncio.coroutine in 3.4

I with async def coroutines in 3.5

72

summary

asynchronous programming

I needs nonblocking api’s

I expect to see many of them
I even replacing blocking ones

I as they can also be used blocking

73

summary
Python 3.6

what about Python 3.6 ?

I a christmas present

I minor asyncio improvements
I run_coroutine_threadsafe

I submit coroutines to event loops in other threads

I timeout() context manager
I simplifying timeouts handling code

I all changes backported to 3.5.x

74

summary
Python 3.6

Python 3.6

I deserves a presentation of its own

I but do checkout formatted string literals

formatted string literal

>>> name = "Fred"

>>> f"He said his name is {name}."

’He said his name is Fred.’

75

summary

Thank you for joining!

76

summary

77

asyncio in Python 3.5
behind the screens

extra slides

78

asyncio in Python 3.5
behind the screens

How to make your library coroutine enabled?

I it’s about operations that happen asynchronously

I often in hardware or network

I that finish somewhere in the future

79

asyncio in Python 3.5
behind the screens

usecase: asyncify pyserial

I use (part of) existing api

I use ”everything is a file” to get async behaviour

I use future objects

80

asyncio in Python 3.5
behind the screens

usecase: asyncify pyserial

I use (part of) existing api

reuse existing api

class AsyncSerialBase:

def __init__(self, port=None, loop=None, timeout=None, write_timeout=None, inter_byte_timeout=None,

**kwargs):

if (timeout is not None

or write_timeout is not None

or inter_byte_timeout is not None):

raise NotImplementedError("Use asyncio timeout features")

self.ser = serial.serial_for_url(port, **kwargs)

if loop is None:

loop = asyncio.get_event_loop()

self._loop = loop
81

asyncio in Python 3.5
behind the screens

usecase: asyncify pyserial

I use ”everything is a file” to get async behaviour
I async by callback that is

going async

self._loop.add_reader(self.fileno(),

self._read_ready, n)

82

asyncio in Python 3.5
behind the screens

usecase: asyncify pyserial

I use future objects
I to replace callback api by coroutines

going async

def read(self, n):

assert self.read_future is None or self.read_future.cancelled()

future = asyncio.Future(loop=self._loop)

. . . # add_reader . . .

return future

83

asyncio in Python 3.5
behind the screens

usecase: asyncify pyserial

I use future objects
I to replace callback api by coroutines

future objects

def _read_ready(self, n):

self._loop.remove_reader(self.fileno())

if not self.read_future.cancelled():

try:

res = os.read(self.fileno(), n)

except Exception as exc:

self.read_future.set_exception(exc)

else:

self.read_future.set_result(res)

self.read_future = None
84

asyncio in Python 3.5
behind the screens

usecase: asyncify pyserial

I use future objects

I because a future returned by a regular function

I can be awaited on

I as if it was a coroutine

future objects

return future

85

asyncio in Python 3.5
behind the screens

usecase: asyncify pyserial

I cleanup

reuse existing api

def close(self):

if self.read_future is not None:

self._loop.remove_reader(self.fileno())

if self.write_future is not None:

self._loop.remove_writer(self.fileno())

self.ser.close()

86

