Asynchronous progre mmlng with
Coroutines

in Python

Asynchronous programming
with Coroutines

in Python

Ewoud Van Craeynest

January 31, 2017

e / aLTRan

introduction

asyncio in Python 3.4 (briefly)
asyncio in Python 3.5
summary

(extra slides)

Table of Contents

Intelligent
Systems

/ alLTRanN

Introduction

What is async programming for us today?

e / aLTRan

Introduction

What is async programming?

» writing concurrent applications 1

» without the use of threads or multiprocessing

» in a cooperative multitasking fashion

Intelligent / alrRan
b 'not to be confused with parallelism systems

Introduction

Not unique to Python

» many other languages also provide similar functionality

» NET got credited by Guido
» Go, Dart, JavaScript, Scala, Clojure, Erlang, ...
» but also Perl and Ruby

b e / aLTRan

Introduction

Not unique to Python

» C++417 was rumoured to include it
» some talk about it on conferences
» but targetted for a new TS

» and hopefully C++-20

h e / aLTRan

Introduction
Blocking

A style of writing code
» that doesn't use blocking calls

» but rather an event loop
» (that mustn't be blocked)

e / aLTRan

Introduction
Blocking

What'’s the issue with blocking api’s?

Why do we now dislike blocking?

b e / aLTRan

Introduction
Blocking

What'’s the issue with blocking api’s?
» your thread is " busy”

» but not doing anything useful
» waiting for disk
» waiting for network/database
» waiting for serial port or other io

Why do we now dislike blocking?

» because now we have an alternative

b e / aLTRan

Introduction
Threading

Isn’t that why threading exists?

Why do we now frown upon threads?

b e / aLTRan

Introduction
Threading

Isn’t that why threading exists?

» ves, threads were designed for multitasking

» at operating system level

e / aLTRan

Introduction
Threading

Why do we now frown upon threads?

» context switches are expensive

» don't scale well

» think large numbers of sockets (C10K)
» synchronisation is hard to get right

» unpredictable scheduling
» race conditions
deadlock

» starvation

\4

e / aLTRan

Introduction
Threading

Threads: the goto of our generation 2

» at least for concurrency

Intelligent / alrRan
b 2doesn’t mean they can't be useful if used correctly, like goto's ™

Introduction
Threading

In the multicore age

» for parallelism however

» threads (or multiprocessing) are still a must

e / aLTRan

Introduction
Threading

Threads no more?

» No!

v

just less of them
one thread for all connections
» i.s.0. one thread per connection

v

» one for all video stuff
» one for all screen io
» one for all ...

e / aLTRan

Introduction

Non blocking calls

Circling back

» we want code not to block a thread

» because we want to do things concurrently

e / aLTRan

Introduction

Non blocking calls

Wait a minute ...

Isn’t all code blocking in a way?

b e / aLTRan

Introduction

Non blocking calls

Isn’t all code blocking in a way?

» indeed, but let's make a distinction

» executing code, crunching data
» waiting for |/O operations to finish

» can't do much about the first
» except parallelize

» but the second is the subject of our attention

e / aLTRan

Introduction

Non blocking calls

Non blocking 1/0

» we want /0 code not to block a thread

» to do things concurrently

» we need new api’s

b e / aLTRan

Introduction

Not so new

» turns out, those api’s, aren't all that new
» Python has a long history of async programming

» though not in the way we know it now

Intelligent / alrRan

Systems

Introduction
History

History of async programming api’s

» There where a few predecessors to what we got in Python3.5

» gevent (greenlets, c stack hack)
tulip (now asyncio)

twisted (event driven)

tornado

vVvYyvVvVVvYyy

all a bit hacked on top of Python2

» asyncio provisional package in 3.4

e / aLTRan

Introduction
History

Predecessors vs 3.5

» all rely on some form of select/poll loops
» so does Python asyncio

» but with nicer syntax

» supported from the language itself

» using new keywords

e / aLTRan

Introduction

Let’s take a look

e / aLTRan

asyncio
python 3.4

asyncio

» python 3.4 added asyncio 3

» Asynchronous 1/0, event loop, coroutines and tasks

» this is where our story really starts

Intelligent
stems | GLTRaN
b 3get it from PyPI for Python 3.3 ot /

asyncio

provisional

provisional in 3.4

» It was, however, a work in progress

Note

The asyncio package has been included in the standard library on

a provisional basis. Backwards incompatible changes (up to and
including removal of the module) may occur if deemed necessary
by the core developers.

/
b "Siems | BLTR@N

An example:

» note the @Gasyncio.coroutine decorator

» and yield from statement

first coroutine

Q@asyncio.coroutine
def print_hello():

while True:
print ("{} - Hello world!".format(int(time())))
yield from asyncio.sleep(3)

asyncio

coroutines

/
"Siems | BLTR@N

coroutines

» are "special” functions

» which can be suspended and resumed

first coroutine
Q@asyncio.coroutine
def print_hello():
while True:
print ("{} - Hello world!".format (int(time())))

yield from asyncio.sleep(3)

asyncio

coroutines

/
"Siems | BLTR@N

asyncio
coroutines
new style
» using coroutines is considered "new style” async

» though we now consider this example code "old syntax”
» see Python 3.5 coroutines later on

new style, not newst syntax

Q@asyncio.coroutine
def print_hello():

while True:
print ("{} - Hello world!".format(int(time())))
yield from asyncio.sleep(3)

/
b "Siems | BLTR@N

asyncio

callbacks
coroutine api

» async code that does use coroutines
» needs a coroutine api
> like asyncio.open_connection and its return objects

coroutine api

Q@asyncio.coroutine
def tcp_echo_client(message, loop):
reader, writer = yield from asyncio.open_connection(’127.0.0.
loop=1loop)
print (’Send: %r’ % message)
writer.write(message.encode())

data = yield from reader.read(100)
print (’Received: %r’ % data.decode())
writer.close()

asyncio in Python 3.5

asyncio in Python 3.5

e / aLTRan

asyncio in Python 3.5

new keywords

coroutines

» python 3.5 added new coroutine keywords

» async def and await

» removing the need for the @asyncio.coroutine decorator
and yield from

e / aLTRan

asyncio in Python 3.5

provisional

still provisional in 3.5 *

» The documentation has still the same note

Note

The asyncio package has been included in the standard library on

a provisional basis. Backwards incompatible changes (up to and
including removal of the module) may occur if deemed necessary
by the core developers.

Intelligent / alTrRan
*note is gone in Python3.6 docs Systems |

asyncio in Python 3.5

coroutines

same examples

» using the new syntax async/await

new syntax

async def print_hello():

while True:
print ("{} - Hello world!".format(int(time())))
await asyncio.sleep(3)

/
"Siems | BLTR@N

coroutines reiterated

» are "special” functions

» which can be suspended and resumed

first coroutine

async def print_hello():

while True:
print ("{} - Hello world!".format(int(time())))
await asyncio.sleep(3)

asyncio

coroutines

/
"Siems | BLTR@N

asyncio

event loop

event loop

» an event loop will take care of starting and resuming tasks

» but in turn, it claims the thread you're on

running the event loop

loop = asyncio.get_event_loop()
loop.run_until_complete(print_hello()) # blocking!

/
Inte oot | auRan

asyncio

old style async

old style async

» not all async code uses coroutines
» in fact, many of the predecessors used callbacks
» triggered by certain events

async using callback

def process_input():
text = sys.stdin.readline()
= int(text.strip())
print (°£ib({}) = {}’.format(n, timed_fib(n)))

loop.add_reader(sys.stdin, process_input)

b "Siems | BLTR@N

asyncio

callbacks

callback style async

» though used intensively in the past

» it escalates quickly in a cascade of callbacks and state
machines

» becoming a bit of a design anti-pattern in itself
» callback hell ...

» but we didn't really have another option
» and it did get us out of threading!

e / aLTRan

asyncio

callbacks

callback style async

» asyncio's event loop supports scheduling regular callbacks
» using a fifo queue of registered callbacks

» in this case as soon as possible

async using callback

def hello_world(loop):
print (’Hello World’)
loop.stop()

loop = asyncio.get_event_loop()

loop.call_soon(hello_world, loop) # <--—

loop.run_forever ()
loop.close()

asyncio

callbacks

callback style async
» delayed callbacks are also possible

» call_later
» call_at

» event loop has own internal clock for computing timeouts

delayed async using callback
loop.call_later(0.5, hello_world, loop)
b Inte oot / aLTRan

asyncio in Python 3.5

coroutines

same examples

» using the new syntax async/await with streams

new syntax

async def tcp_echo_client(message, loop):
reader, writer = await asyncio.open_connection(’127.0.0.1’, 88
loop=loop)

print (’Send: Y%r’ ’ message)
writer.write(message.encode())

data = await reader.read(100)
print (’Received: %r’ % data.decode())

print (’Close the socket’)
writer.close() Ran

asyncio in Python 3.5

coroutines

suspend on yield from

» coroutine will be suspended

» until open_connection has finished

coroutine api

reader, writer = await asyncio.open_connection(’127.0.0.1’, 8888,
loop=loop)

/
Inte oot | auRan

asyncio

coroutine api in Python 3.5

coroutine api

» also the objects returned by open_connection have
coroutines

» though only for what blocks
» write is documented not to block

» but we do want to suspend until read finishes

» without blocking the thread

coroutine api

writer.write(message.encode())

data = await reader.read(100)
Systms dLTRaN

asyncio
callbacks in Python 3.5

coroutine api

» written as if it where synchronous code
» no callbacks and keeping state

» but nonblocking with suspend and resume behaviour

coroutine api

async def tcp_echo_client(message, loop) :
reader, writer = await asyncio.open_connection(’127.0.0.1’, 88
loop=loop)

print(’Send: %r’ ’ message)

writer.write(message.encode())

data = await reader.read(100)
print (’Received: Jr’ % data.decode())
writer.close()

asyncio in Python 3.5

coroutines api

coroutine api

» as with Python 3.4

» we need alternatives for all blocking api’s we might want to
use

» as usual Python comes with (some) batteries included
» additional batteries on PyPI

» though it must be mentioned that Twisted currently offers
more

e / aLTRan

asyncio in Python 3.5

coroutines api

batteries include:

» low level socket operations
» streams & connections
> sleep

» subprocess
» synchronisation primitives
» nonblocking, with coroutines

e / aLTRan

asyncio in Python 3.5

asyncio.org

asyncio.org

» lists PyPl libraries to use with asyncio
» things like:
» HTTP, ZMQ, DNS, Redis, memcache, Mongo, SQL, ...
REST, WebSockets, IRC, wsgi, Docker, . ..
» SIP, SSH, XMPP, SMTP, ...
» files 5, queue, read-write lock
» pyserial, cron, blender

v

Intelligent / alrRan
Sworkaround using threads systems

asyncio in Python 3.5

asyncserial

asyncserial

» coroutine api for serial port

asyncserial example

async def foo():
port = asyncserial.AsyncSerial(’/dev/ttyUSB1’)

await port.write(somedata)
response = await port.read(5)
await some_handle_response(response)

/
b "Siems | BLTR@N

asyncio in Python 3.5

aiozmgq.rpc

aiozmgq.rpc

» RPC mechanism on top of ZeroMQ using coroutines

RPC with coroutines

client = await aiozmqg.rpc.connect_rpc(connect=’tcp://127.0.0.1:55

ret = await client.call.get_some_value()
await client.call.start_some_remote_action(some_calc(ret))

await asyncio.sleep(42)

await client.call.stop_some_remote_action()

/
b Inte oot | auRan

asyncio in Python 3.5
aiohttp

aiohttp

» HTTP using coroutines

» even with and for can use coroutines

aiohttp

async def fetch(session, url):
with aiohttp.Timeout (10):
async with session.get(url) as response:
return await response.text()

if __name__ == ’__main__’:
loop = asyncio.get_event_loop()
with aiohttp.ClientSession(loop=loop) as session:
html = loop.run_until_complete (
fetch(session, ’http://python.org’))

print (html)

asyncio in Python 3.5

coroutines

AsyncSSH

aiohttp

async def run_client():
async with asyncssh.connect(’localhost’) as conn:
stdin, stdout, stderr = await conn.open_session(’echo "He

output = await stdout.read()
print (output, end=’’)

await stdout.channel.wait_closed()

status = stdout.channel.get_exit_status()
if status:

print (’Program exited with status %d’ 7 status, file=
else:

print (’Program exited successfully’)

asyncio.get_event_loop() .run_until_complete(run_client())

asyncio in Python 3.5
blocking

blocking stuff

» blocking functions should not be called directly

» it will block the loop and all other tasks
» if no high level async API available

» run in executor, like ThreadPoolExecutor

blocking stuff in executor

await loop.run_in_executor (None, my_blocking_func, argl, arg2)

[l
S s / alTran

asyncio in Python 3.5

coroutines

aiofiles

» file IO is blocking

» not easily made asynchronous
» aiofiles delegates to thread pool

» unblocking your event loop
» using the future mechanism

» discussion with Guido on GitHub about asynchronous files

blocking stuff behind the scenes

async with aiofiles.open(’filename’, mode=’r’) as f:
contents = await f.read()

/
Inte oot | auRan

asyncio in Python 3.5
testing

asynctest

» you'll want to test coroutines
» but that requires a loop running

» loop aware test
» asynctest module

asynctest

import asynctest
import aiozmq.rpc

class MyRpcTest (asynctest.TestCase):
async def setUp(self):

self.client = await aiozmq.rpc.connect_rpc(
connect=’tcp://127.0.0.1:5555”)

Systems /f —

asyncio in Python 3.5

testing

don't write your unit tests this way!

asynctest testcase

async def test_some_remote_action(self):
= self.client.call
r = await cc.get_some_value()
self.assertGreater (someValue, r)

await cc.start_some_remote_action(some_calc(ret))

for _ in range(5):
await time.sleep(0.5)
newr = await cc.get_some_value()
self.assertGreater(newr, r)
r = newr

await cc.stop_some_remote_action()

asyncio in Python 3.5
testing

asynctest

» loop aware test

» ideally run unrelated tests concurrently on the same loop
» realistic?
» perhaps not

asynctest
import asynctest
b s / alTran

asyncio in Python 3.5
testing

asynctest: other features

» ClockedTestCase

» allows to control the loop clock
» run timed events
» without waiting for the wall clock

> accelerated tests anyone?

asynctest
import asynctest
b I sims / alTran

asyncio in Python 3.5
testing

asynctest: other features

» CoroutineMock
» FileMock
» SocketMock

asynctest
import asynctest.selector
b s / aLTran

asyncio in Python 3.5
testing

pytest-asyncio

» for those on pytest iso unittest
» haven't tried it ...
» claim custom event loop support

» monkey patching coroutines allowed

pytest-asyncio

@pytest.mark.asyncio

async def test_some_asyncio_code():
res = await library.do_something()
assert b’expected result’ == res

/
b "Siems | BLTR@N

asyncio in Python 3.5
stopping loop

stopping the loop

» some applications might require stopping the loop

» basically any await statement is an opportunity for the loop
to stop

» it will warn you about unfinished scheduled tasks on the loop

stopping the loop
loop.stop()
» s / aLTran

asyncio in Python 3.5

cancelling a task
» sometimes not required to stop whole loop

» a single task might suffice

stopping the loop

sometask = loop.create_task(my_coroutine())

sometask.cancel ()

stopping loop

/
"Siems | BLTR@N

asyncio in Python 3.5

threadsafety

» the whole thing isn't threadsafe
» why would it ?

» so take precautions from other threads

stopping threadsafe

loop.call_soon_threadsafe(loop.stop)

stopping loop

loop.call_soon_threadsafe(sometask.cancel)

/
"Siems | BLTR@N

asyncio in Python 3.5

exceptions

» raised exceptions from a coroutine
» get set on the internal future object

» and reraised when awaited on

exceptions

async def foo():
raise Exception()

async def bar():
await foo() # Exception time

exceptions

/
"Siems | BLTR@N

asyncio in Python 3.5

exceptions

exceptions

» but if never awaited
» aka exception never consumed

» it's logged with traceback ©

exceptions

async def foo():
raise Exception()

asyncio.ensure_future(foo()) # will log unconsumed exception

/
\nlelllge"r‘u / alTRanN
b 6Get nore Iogglng by enabling asyncio debug mode Systems /

asyncio in Python 3.5
logging

logging

» asyncio logs information on the logging module in logger
'asyncio’

» useful to redirect this away from frameworks that steal stdin
and stdout

» like robotframework

e / aLTRan

asyncio in Python 3.5

alternatives

alternatives to asyncio

> as is to be expected ...
» not everyone completely agrees on Python's implementation

» and offer partial or complete improvement over asyncio

b e / aLTRan

asyncio in Python 3.5

alternatives to asyncio

other loops

» we can use loops other than the standard one

» like uvloop ’
» a fast, drop-in replacement of asyncio event loop
» implements asyncio.AbstractEventLoop

» promises Go-like performance

» expect others . ..

uvloop

import asyncio
import uvloop
loop = uvloop.new_event_loop()

asyncio.set_event_loop(loop)
. . "sems | ALTRan
b "https://github.com/MagicStack/uvloop systems. f

N

asyncio in Python 3.5

alternatives

curio: an alternative to asyncio

v

by David Beazly
based on task queueing
» not callback based event loop

v

» not just the loop

» complete async 1/O library
» sockets, files, sleep, signals, synchronization, processes, ssl, ipc
» interactive monitoring

» claims 75 to 150% faster than asyncio

» claims 5 to 40% faster than uvloop
» and about the same speed as gevent

e / aLTRan

asyncio in Python 3.5

alternatives

alternatives to asyncio

» | like standard stuff

» but benefits promised by others make them enticing . ..

e / aLTRan

summary

summary

e / aLTRan

summary

asynchronous programming

» concurrency without threading
» write suspendable functions

» as if it was synchronous code

e / aLTRan

summary

asynchronous programming

» with callbacks in any version
» with @asyncio.coroutine in 3.4

» with async def coroutines in 3.5

e / aLTRan

summary

asynchronous programming

» needs nonblocking api’s
> expect to see many of them

» even replacing blocking ones
» as they can also be used blocking

e / aLTRan

summary
Python 3.6

what about Python 3.6 7

v

a christmas present

v

minor asyncio improvements

v

run_coroutine_threadsafe
» submit coroutines to event loops in other threads

v

timeout () context manager
» simplifying timeouts handling code

v

all changes backported to 3.5.x

e / aLTRan

summary
Python 3.6

Python 3.6

» deserves a presentation of its own
» but do checkout formatted string literals

formatted string literal

>>> name = "Fred"
>>> f"He said his name is {name}."
’He said his name is Fred.’

/
B "Siems | BLTR@N

summary

Thank you for joining!

e / aLTRan

summary

&

KEEP
CALM

AND
WRITE
COROUTINES

Intell
"Sstems | ALTRaN

asyncio in Python 3.5

behind the screens

extra slides

e / aLTRan

asyncio in Python 3.5

behind the screens

How to make your library coroutine enabled?

» it's about operations that happen asynchronously
» often in hardware or network

» that finish somewhere in the future

b e / aLTRan

asyncio in Python 3.5

behind the screens

usecase: asyncify pyserial

» use (part of) existing api
» use "everything is a file” to get async behaviour

» use future objects

b e / aLTRan

asyncio in Python 3.5

behind the screens

usecase: asyncify pyserial

» use (part of) existing api

reuse existing api
class AsyncSerialBase:
def __init__(self, port=None, loop=None, timeout=None, write_
**xkwargs) :
if (timeout is not None
or write_timeout is not None

or inter_byte_timeout is not None) :
raise NotImplementedError("Use asyncio timeout feature
self.ser = serial.serial_for_url(port, **kwargs)
if loop is None:
loop = asyncio.get_event_loop()
self._loop = loop

asyncio in Python 3.5

behind the screens

usecase: asyncify pyserial

» use "everything is a file" to get async behaviour
» async by callback that is

going async

self._loop.add_reader(self.fileno(),
self._read_ready, n)

/
Inte oot | auRan

asyncio in Python 3.5

behind the screens

usecase: asyncify pyserial

» use future objects
» to replace callback api by coroutines

going async

def read(self, n):
assert self.read_future is None or self.read_future.cancelled(

future = asyncio.Future(loop=self._loop)
. # add_reader .
return future

/
"Siems | BLTR@N

asyncio in Python 3.5

behind the screens

usecase: asyncify pyserial

» use future objects
» to replace callback api by coroutines

future objects

def _read_ready(self, n):
self._loop.remove_reader(self.fileno())
if not self.read_future.cancelled():
try:
res = os.read(self.fileno(), n)
except Exception as exc:
self.read_future.set_exception(exc)
else:
self.read_future.set_result(res)
self.read_future = None

asyncio in Python 3.5

behind the screens

usecase: asyncify pyserial

» use future objects
» because a future returned by a regular function
> can be awaited on

» as if it was a coroutine
future objects
return future
b Inte oot / alTran

asyncio in Python 3.5

behind the screens

usecase: asyncify pyserial

» cleanup

reuse existing api

def close(self):
if self.read_future is not None:

self._loop.remove_reader(self.fileno())
if self.write_future is not None:

self._loop.remove_writer(self.fileno())
self.ser.close()

/
b "Siems | BLTR@N

