
64 bit Bare Metal
Programming on RPI-3

Tristan Gingold
gingold@adacore.com

mailto:gingold@adacore.com

What is Bare Metal ?

Images: Wikipedia

•No box

What is Bare Metal ?

Your application is the OS

No Operating System

Why Bare Board ?

Not enough
ressources for an OS

Why Bare Board ?

It’s fun
(YMMV)

Why Bare Board ?

To learn
 low-level stuff

Why Raspberry PI-3 ?

It’s popular:
•Forums (https://www.raspberrypi.org/forums/ - Bare metal)
•Many tutorials (like github.com/dwelch67/raspberrypi.git)
•It’s safe (you cannot brick it)

https://www.raspberrypi.org/forums/
http://github.com/dwelch67/raspberrypi.git

Why Raspberry PI-3 ? But…

It’s poorly documented:
•It’s a Broadcom SOC
•Data sheet of BCM2835 is available
•But it’s Raspberry Pi 1
•It’s incomplete (watchdog ?)

•Differences between Pi 1 and Pi 2 are (partially)
documented

•What about BCM2837 ? Wifi ? Bluetooth ?
•Only 1 page schematic of Pi 3 (IO)
•GPU is partially documented
•https://www.raspberrypi.org/documentation/hardware/
raspberrypi/bcm2836/README.md

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md

Why Raspberry PI-3 ? But…

Raspberry PI-3 Platform

PI-1: ARM1176JZF PI-2: 4 * Cortex A7

PI-3: 4 * Cortex A53
(Aarch-64)

Raspberry PI Architecture

VideoCore
(GPU)

SDRAM

I/O

Cortex A53

Cortex A53

Cortex A53

Cortex A53

0x00000000

0x3f000000

Local IO
0x80000000

L2

Firmware

Raspberry PI Boot (1/2)

VideoCore
(GPU)

SDRAM

I/O

Cortex A53

Cortex A53

Cortex A53

Cortex A53

Local IO

L2

Firmware

1. VideoCore GPU boots, Cortex cores are off
2.GPU initialise HW, load config and ELF file

Raspberry PI Boot (2/2)

VideoCore
(GPU)

SDRAM

I/O

Cortex A53

Cortex A53

Cortex A53

Cortex A53

Local IO

L2

Firmware

3.GPU starts the cores (*)
Note: Boot process is very safe - you cannot brick the board

Files on the SD Card (FAT32)

• bootcode.bin
 First file read by the ROM. Enable SDRAM, and load…
 Boot loader: load start.elf

• start.elf
GPU firmware, load the other files and start the CPUs

• config.txt
configuration

• fixup.dat
Needed to use 1GB of memory

• kernel7.img
Your bare metal application (or the Linux kernel)
https://github.com/raspberrypi/firmware/tree/master/boot

https://github.com/raspberrypi/firmware/tree/master/boot

config.txt

arm_control=0x200
kernel_old=1
disable_commandline_tags=1

Start in 64 bit mode!

Load at address 0x0

Don’t write ATAGS at 0x100

https://github.com/raspberrypi/documentation/blob/master/
configuration/config-txt.md

https://github.com/raspberrypi/documentation/blob/master/configuration/config-txt.md

Your First Bare Metal Program

“Hello World” on the console

You need:

• A 3.3v to serial USB converter

• A terminal emulator

• https://github.com/gingold-adacore/rpi3-fosdem17.git

https://github.com/gingold-adacore/rpi3-fosdem17.git

Console (Mini-UART)

GND (0V)
RPI Tx
RPI Rx

Serial-to-USB

Makefile

No libc

Linker script
Linker map

Crt0

• C Run Time 0

• Traditional name for the entry point file (before main)

• Generally written in assembly

• Has to initialise the board

• Simpler on RPI as the GPU does initialisation

• Still have to create a C friendly environment

Crt0: Setup (before calling main)

Start point (at 0x00)

Keep only
cpu #0

Set stack
pointer

Clear bss

Call C main

No need for more assembly

C code

• Crt0 calls main()

• You can execute C code

• But no syscalls, you have to write your own IO code

• There might be no C library (you write all the code)

• Write your own drivers

• Essentially writing and reading words at special addresses, with
side effects

• First driver on RPI3: Serial port

Main()

Send one byte to the UART

Handle \n

Send a string

Next slide

Wait until ready

Write to the TX shift register

UART init

Defines

UART init

GPIO init

Linker script

What next ?

• Make your own program

• Write drivers

• GPIO are very easy

• I2C, SPI, MMC aren’t difficult

• Video is easy too (mainly handled by the Firmware)

• USB, Bluetooth, Wifi, Ethernet need doc

• At this point it’s like an Arduino…

Performance

• You must enable cache

• Performances are abysmal without cache

• But IO regions must not be cacheable

• As IO regions have side effects

• So you need to setup MMU

• To mark IO regions as uncacheable

• Static 1-1 tables are enough (and easy to generate)

SMP

• RPI-3 has 4 cortex-A53 cores

• Use multi-processors

• All processors start

• Use mpidr to get core number

• Assign different stack to each processor

• Initialise hardware only once!

Processor mode

• Cores start at EL3 (Exception Level) Secure Monitor

• Usually boot is handled by some firmware

• Need to switch to lower EL: EL1 is OS, EL2 is hypervisor

• EL0 is not recommended (user applications)

• Per EL exceptions handlers

• Could be used for debug (dump registers in case of crash)

• See smp/ directory in the github repo for the code

Demo: ray casting

• Written in Ada 2012

• (Could have been guessed from the company name)

• Realtime kernel (Ada ravenscar tasking profile)

• Use 4 cores

• DMA-2D, Vsync interrupt

• No GPU uses

• ~60 fps

Demo (photo of the display)

Demo: ray casting

