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What is Bare Metal ?
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•No box



What is Bare Metal ?

Your application is the OS

No Operating System



Why Bare Board ?

Not enough 
ressources for an OS



Why Bare Board ?

It’s fun 
(YMMV)



Why Bare Board ?

To learn 
 low-level stuff



Why Raspberry PI-3 ?

It’s popular: 
•Forums (https://www.raspberrypi.org/forums/ - Bare metal) 
•Many tutorials (like github.com/dwelch67/raspberrypi.git) 
•It’s safe (you cannot brick it)

https://www.raspberrypi.org/forums/
http://github.com/dwelch67/raspberrypi.git


Why Raspberry PI-3 ? But…

It’s poorly documented: 
•It’s a Broadcom SOC 
•Data sheet of BCM2835 is available 
•But it’s Raspberry Pi 1 
•It’s incomplete (watchdog ?) 

•Differences between Pi 1 and Pi 2 are (partially) 
documented 

•What about BCM2837 ? Wifi ? Bluetooth ? 
•Only 1 page schematic of Pi 3 (IO) 
•GPU is partially documented 
•https://www.raspberrypi.org/documentation/hardware/
raspberrypi/bcm2836/README.md

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md


Why Raspberry PI-3 ? But…



Raspberry PI-3 Platform

PI-1: ARM1176JZF PI-2: 4 * Cortex A7

PI-3: 4 * Cortex A53 
(Aarch-64)



Raspberry PI Architecture
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Raspberry PI Boot (1/2)
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1. VideoCore GPU boots, Cortex cores are off 
2.GPU initialise HW, load config and ELF file



Raspberry PI Boot (2/2)
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3.GPU starts the cores (*) 
Note: Boot process is very safe - you cannot brick the board



Files on the SD Card (FAT32)

• bootcode.bin
 First file read by the ROM.  Enable SDRAM, and load… 
 Boot loader: load start.elf 

• start.elf
GPU firmware, load the other files and start the CPUs 

• config.txt
configuration 

• fixup.dat
Needed to use 1GB of memory 

• kernel7.img
Your bare metal application (or the Linux kernel) 
https://github.com/raspberrypi/firmware/tree/master/boot

https://github.com/raspberrypi/firmware/tree/master/boot


config.txt

arm_control=0x200 
kernel_old=1 
disable_commandline_tags=1

Start in 64 bit mode!

Load at address 0x0

Don’t write ATAGS at 0x100

https://github.com/raspberrypi/documentation/blob/master/
configuration/config-txt.md

https://github.com/raspberrypi/documentation/blob/master/configuration/config-txt.md


Your First Bare Metal Program

“Hello World” on the console 

You need: 

• A 3.3v to serial USB converter 

• A terminal emulator 

• https://github.com/gingold-adacore/rpi3-fosdem17.git

https://github.com/gingold-adacore/rpi3-fosdem17.git


Console (Mini-UART)

GND (0V)
RPI Tx
RPI Rx

Serial-to-USB



Makefile

No libc

Linker script
Linker map



Crt0

• C Run Time 0 

• Traditional name for the entry point file (before main) 

• Generally written in assembly 

• Has to initialise the board 

• Simpler on RPI as the GPU does initialisation 

• Still have to create a C friendly environment



Crt0: Setup (before calling main)

Start point (at 0x00)

Keep only 
cpu #0

Set stack 
pointer

Clear bss

Call C main

No need for more assembly



C code

• Crt0 calls main() 

• You can execute C code 

• But no syscalls, you have to write your own IO code 

• There might be no C library (you write all the code) 

• Write your own drivers 

• Essentially writing and reading words at special addresses, with 
side effects 

• First driver on RPI3: Serial port



Main()

Send one byte to the UART

Handle \n

Send a string

Next slide

Wait until ready

Write to the TX shift register



UART init

Defines

UART init

GPIO init



Linker script



What next ?

• Make your own program 

• Write drivers 

• GPIO are very easy 

• I2C, SPI, MMC aren’t difficult 

• Video is easy too (mainly handled by the Firmware) 

• USB, Bluetooth, Wifi, Ethernet need doc 

• At this point it’s like an Arduino…



Performance

• You must enable cache 

• Performances are abysmal without cache 

• But IO regions must not be cacheable 

• As IO regions have side effects 

• So you need to setup MMU 

• To mark IO regions as uncacheable 

• Static 1-1 tables are enough (and easy to generate)



SMP

• RPI-3 has 4 cortex-A53 cores 

• Use multi-processors 

• All processors start 

• Use mpidr to get core number 

• Assign different stack to each processor 

• Initialise hardware only once!



Processor mode

• Cores start at EL3 (Exception Level) Secure Monitor 

• Usually boot is handled by some firmware 

• Need to switch to lower EL: EL1 is OS, EL2 is hypervisor 

• EL0 is not recommended (user applications) 

• Per EL exceptions handlers 

• Could be used for debug (dump registers in case of crash) 

• See smp/ directory in the github repo for the code



Demo: ray casting

• Written in Ada 2012 

• (Could have been guessed from the company name) 

• Realtime kernel (Ada ravenscar tasking profile) 

• Use 4 cores 

• DMA-2D, Vsync interrupt 

• No GPU uses 

• ~60 fps



Demo (photo of the display)



Demo: ray casting


