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Agenda

● Logical (aka. SQL-) backup
● Binary backup
● PITR & „replication“ with archiving
● Binary streaming replication

● Classic misconceptions and pitfalls
● What you most probably want to do



  

Some assertions

● You value your data
– Otherwise you'd not be here ;-)

● You have (at least) 2 decent servers available
– ~ same amount of CPU and RAM

– ECC memory

– BBU HDD controller / SAN

– a working UPS

● These should by all means seperated as far as possible (and 
feasible) from each other

● You know your RTO and RPO requirements



  

Omnipotent natural laws

● Gravity
● Speed of light

● Murphy's law *

– Disaster does strike

– Unlike lightning, disaster tends to strike more than 
once in a row

– Ask the Gitlab guys!



  

And keep Einstein in mind

● „Only two things are infinite, the universe and 
human stupidity, and I'm not sure about the 
former.“ **



  

Evolution

● The options and tools evolved over the years
● Nastily, the docs have mostly been amended
● Usually, you want to do it the way that comes 

last in the docs...
● Which means you're hopefully ready to go after 

reading ~ 50 pages of A4 in 2 chapters
● You should still read all of it!



  

The options you had with 7.0

Logical backup



  

Sidenote: I especially like this one



  

Logical aka. „SQL-“ backup

● pg_dump[all] connects to your DB just as any 
other client and provides you with a snapshot of 
your data
– You can restore the state of the DB at the moment 

you initiated the backup

● Can dump whole clusters (pg_dumpall), 
databases, single tables

● Can provide textual (SQL) representation or 
custom („proprietary“) format



  

Textual format of pg_dump

● Plain SQL

● Uses COPY for performance

● Can be used to port DBs….

● Can be read by humans



  

Custom format of pg_dump

● pg_dump -Fc

● Restored using pg_restore (into psql or 
straight into a DB)

● Can restore single tables
● Compressed by default



  

Directory format of pg_dump

● pg_dump -Fd

● Can backup (and restore) in parallel (-j X)

● Restored using pg_restore (into psql or 
straight into a DB )

● Can restore single tables
● Compressed by default



  

Never forget pg_dumpall!

● pg_dump reads from databases

● So, global objects are not saved!
– Roles

– Tablespaces

● So, whenever you pg_dump, do a 
pg_dumpall --globals-only
along with it!



  

RTO & RPO of logical backup

● RTO
– between minutes and days

– basically depending on size of DB

● RPO
– your last backup run

– in the worst case, the one before*!



  

Pros and cons

+ backup is readable by humans (or can be made so), 
schema & roles can go to your VCS

+ can be read by newer versions of PG
+ can backup & restore single entities if need be
+ will reveal issues with the „dark corners“ of your DB 

(when initialised with data checksums)*

- can only backup and thus restore a single point in time
- rather slow
- RPO & RTO... uhm, well



  

The way beyond pg_dump

● 7.1 added the WAL
● 8.0 added the ability to do 

– On-line backup

– PITR (no, that's not Pain In The Rear!)

● 9.1 added pg_basebackup
– „gift-wrapping“ existing backup methods

● 9.2 allowed pg_basebackup to also fetch WAL 
data



  

On-line, binary backup

● Erm, we're not there yet ;-)
● We have to discuss some of Postgres' 

peculiarities first
● Everything binary is centered around the WAL...



  

What the WAL is

● The Write Ahead Log (WAL) is basically the 
logbook of the DB

● Other DBMS call the equivalent „redolog“
– some also have an „undolog“, PG doesn‘t need that

● Every change is first written to the WAL

● At a CHECKPOINT (which can be spread!), the 
content is written to the HEAP, usually creating 
new row versions



  

WAL (vastly simplified)

HEAP

W A L s e g m e n t s
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DELETE

CREATE …

Shared
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CHECKPOINT



  

WAL organisation

● The WAL consists of a chain of files, 16MB each 
(„segments“)

● Or more like a ring, as WAL segments get renamed 
and overwritten when feasible

● It resides in $PGDATA/pg_xlog (10.0 ff: „pg_wal“**)

● The size is determined by wal_min_size and 
wal_max_size (default: 1GB/2GB)

● These are SOFT limits!



  

The archiver

● WAL segments are written by the „wal writer“ 
process

● WAL segments are read and applied to the 
HEAP by the „checkpointer“ process

● In between, they are handed to the archiver 
process 

– when archive_mode != ‚off‘
– which is almost certainly what you want!



  

Binary snapshot

● Prepare your database:

– pg_start_backup()

● Get a snapshot
– We'll discuss the options later!

● „Release“ the HEAP again

– pg_stop_backup()



  

snapshot

Master DB

1:1 copy 
of PGDATA



  

Ok, anything more that I need?

● Oh yes!
● All the WAL segments since the 

pg_start_backup()!
● Hopefully, they are still there, eh?

– If you wrote a lot of data into your DB after 
pg_start_backup(), they might have been recycled 
already!*



  

Master DB

1:1 copy 
of PGDATA

WAL
segments

archive_command



  

Master DB

1:1 copy 
of PGDATA

WAL
segments

Restore Target

Provide via „re
store_command“

in recovery.c
onf

(e.g. cp, scp, rs
ync, …

)
Copy to

 new PGDATA



  

RTO & RPO

● RTO
– between minutes & days

– depending on size & activity during backup

● RPO
– the end of your backup

– or the end of the one before!*



  

Pros and cons

+ 1:1 copy of your DB
+ rather failsafe
+ rather fast
+ RTO fine

- can only back up and thus restore a single point in 
time

- can only back up and thus restore whole DB clusters
- RPO... still, uhm, well



  

Options to get that snapshot

● LVM / filesystem snapshot
● rsync
● pg_basebackup



  

Options to get that snapshot

● LVM / filesystem snapshot
● rsync
● pg_basebackup



  

Options to get the WAL segments

● archive_command (postgresql.conf)
● pg_basebackup 

– With --xlog-method=[fetch|stream]

– -X [s|f]

USE BOTH!



  

Why use both?

● Actually, get used to both
● When you have a WAL archive anyway, you 

can (probably) rely on that
● But pg_basebackup with -X is also handy to 

clone new slaves (we'll get there)



  

archive_command

Master DB

WAL archive1:1 copy 
of PGDATA

WAL
segments



  

Why do I want to have a 
WAL archive?

● The WAL segments, together with the snapshot of your 
HEAP, allow you to restore your database to any point 
in time
– e.g., the moment right before you forgot the WHERE in your 

„DELETE FROM customers“ statement ;-) **

● That‘s Point In Time Recovery („PITR“)
● Obviously, you need two things for that:

– a binary snapshot of your HEAP

– all WAL segments between your snapshot and your mistake
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RTO & RPO

● RTO
– minutes to hours (cold standby)

– seconds (warm standby)

● RPO
– your last archived WAL segment

● warm standby = „poor man's replication“



  

Binary streaming replication

● Binary streaming is like a warm standby server 
as seen before

● But the WAL segments get sent over the 
network directly

● Transactions are replayed immediately
– i.e., „ASAP“



  

Master

WAL
stream Slave



  

Let's talk about options!

● Streaming replication can be synchronous or asynchronous
– choose per transaction!

– choose between remote_write & remote_apply

● can use replication slots
● can be cascaded
● slaves can serve RO queries

– you can take your backup from a slave (

● Streaming slave can be delayed (so you can still press the 
big red button) **
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Sync replication pitfalls

● You can now have N sync slaves
● Make sure you always have N+1 slaves in total

– If you go to N-1, your DB will still work

– but not finish any transactions before you get back to N! 
*

● Network latency / roundtrip time becomes an issue!
– so choose wisely (you can!) which transactions should 

by sync

– and where to put your sync slave



  

Pros and cons

+ 1:1 copy of your DB, online
+ Reliable & battle proven
+ RTO & RPO very good
+ very flexible

- works on whole DB clusters only
- implications on network connection loss



  

So, with replication,...

● I don't need the WAL archive anymore, right?

R U effing kidding me?!?



  

We need to talk...

● Replication does not replace backup
● And, while we're on it: **
● RAID does not replace backups
● SAN does not replace backups
● „The Cloud“ does not replace backups **



  

Putting it all together
● You want to have a WAL archive
● You want to have (a) replication slaves

– maybe more than one

– maybe a sync one

– maybe a delayed one

– maybe cascaded

● RTO: minimal
● RPO: 

– closest possible (sync slave)
– closest feasible (async slave)

● Protection against human errors (RTO obviously rises...)
● Allow read only queries on slave(s)



  

Master DB

WAL archive
1:1 copy 

of PGDATA

re
st

or
e_

co
m

m
an

d

Stream

Slave DB

archive_com
m

and



  

Pros and cons

+ all of replication
+ all of WAL archive

- major version still has to be the same



  

Configure postgresql.conf

● wal_level = replica # or logical already

● archive_mode = on   # always to cascade

● archive_command = /your/archive_script.sh %p %f

● max_wal_senders = 10 # or more

● max_replication_slots = 10 # or more

● synchronous_commit = local # for now

● synchronous_standby_names = '' | <set>

● hot_standby = on

● log_collector = on



  

Set up your WAL archive

● Don't roll your own! **
– Use pgbarman, pgbackrest, WAL-E, …

– Follow their instructions

● Invest the saved time in thinking about redundancy, 
persistance and data safety

● Your DB server is not a good place to keep your 
archive **

● Even the same datacenter is a bad choice (unless 
you mirror)



  

/your/archive_script.sh
● Only slightly complex functionality will not fit in archive_command
● A script can be changed w/out HUPing the DB
● Purpose of the script: somehow get %p ($1) to your WAL archive 

as %f ($2)
● rsync is not a bad choice, however:

– make sure %f does not exist in the archive yet before you start sending

– call sync remotely (or mount your archive sync) after sending

– rsync tends to give RCs > 127, filter these

● Make sure it never, ever returns RC=0 w/out having done the job
– Unless you're still setting everything up

– „set -e“ etc.

– Errors will end up in PG's log (as we turned log_collector on)



  

Let me repeat that

● You are most probably writing into some OS 
pagecache, and potentially async on top (NFS)!

● Your backup is not safe until it has been flushed to 
persistent storage in a safe location *

● Your archived WAL segments are not safe until 
they have been flushed to persistent storage in a 
safe location *

● You'll probably make some compromises, but keep 
the implications on the RCO in mind **



  

Now, activate archiving

● And watch it
● PG will not throw away WAL segments it could 

not archive
– your PGDATA can run out of disk space!

● Replication slots have the same implication, so 
keep that in mind



  

Now, try a full backup

● Since you're using a tool anyway**, you're 
hopefully ready to go already (rights, replication 
permission, preparation, ...)

● E.g., do 

– barman backup all



  

Doing your first slave

● Add a „replication“ line to your master's pg_hba.conf

● Prepare the new PGDATA

– e.g. on Debian/Ubuntu do a pg_createcluster and rm 
-rf the result (no, really)

– Make sure the postgresql.conf etc. match your master's

● Run 
● pg_basebackup -X stream -h <master> -U 
<user> -R -D <new_pgdata>

● Add a restore_command to the resulting recovery.conf
– Which gets the segment from your archive

● Start the slave, enjoy, rinse, repeat



  

Now, start looking for software

● E.g.
– repmgr

– PAF

– pglookout

– ...



  

Logical replication

● In the not so recent past...
● your options were basically 

– Slony

– Bucardo

– Skytools



  

Logical replication
● Coming into core with 10.0
● Already available with e.g. pglogical
● If you can afford a few MB extra backup volume, 

already set

– wal_level = logical

● Allows for e.g.
– painless, low-downtime version upgrades

– sharding

– collecting data from different DBs in a DWH

– multi-master

– …



  

When in core

● Somewhat moving target yet, but will be more 
like



  

Famous last words

● Don't reinvent the wheel!
● Test your backup procedure!
● Test your restore procedure!!! **
● Monitor your logs and your lags!
● Make sure your configs are in sync!
● Make sure everybody in your team understands your 

backup and restore procedures! **
● In case of disaster *

– keep calm and follow your procedures **



  

Thank you for your attention!


