GPAC: delivery of VR/360 videos using Tiles

Ahmed Rida SEKKAT
Ahmed JELIJLI
Telecom ParisTech
FOSDEM17
05/02/2017
What is GPAC?

- **Multimedia Packagers, Streamers and Player**
 - Multi-platform: all desktops, mobile (iOS, Android), embedded linux
 - Features
 - Any codec, any protocol
 - Graphics & Interactivity

- **Advocating Multimedia Standards**
 - MPEG, W3C, IETF
 - Reference and Utility Software for various MPEG Standards

- **Open Source Software**
 - Dual LGPL v2.1 / Commercial Licensing
 - 600000+ lines of C code
 - Hosted on GitHub
 - Per month: 17000+ visits, 4000+ dl
 - gpac.io
 - gpac-licensing.com

- **Academic Dissemination**
 - 100+ academic references
 - 300+ publications using GPAC

- **Collaborations**
 - 8 EU funded projects
 - 18 French funded projects
 - Several industrial-funded projects

- **Teaching**
 - Labs session
 - Students projects
 - Corporate Training
Key GPAC Tools

Multimedia Packagers (MP4Box)
- MPEG-2 TS (Live Multicast, or DASH/HLS)
- ISOBMF Packager & Analyzer
- DASH Segmenter/Live simulator/Encoder
- Support HEVC (+layered HEVC), AVC, HE-AAC…

Multimedia Player (MP4Client)
- MPEG-2 TS, RTP, ISOBMF, DASH, HLS
- Multi-path delivery of layered coded data
- SVG/BIFS/VRML + JavaScript
- VR / 3D / Auto-stereoscopic output
• New public test infrastructure.
• Range extension support for AVC and HEVC.
• Improved TTML support.
• Support of VR/360 videos, including using Tiles => This Talk.
• Hardware decoding
 • for OSX and iOS (VideoToolBox).
 • for Android (MediaCodec).
• Coming soon:
 • Support for more PIFF and Smooth Streaming file format (branch).
 • Hardware accelerated encryption (branch).
• Other projects: check https://github.com/gpac
Streaming of VR/360 content

- **Bandwidth is expensive**
 - 360 videos require at least 4K x 2K.
 - Some claim: 12K x 6K for achieving 4k field of view resolution.

![360° panorama of a basketball game](image)
Streaming of VR/360 content

- Necessity to reduce bandwidth
 - Video Compression
 - of a 2D video after some projection
 - possibly after some shuffling & packing
 - Adaptive delivery
 - Deliver parts of the video based on viewpoint/viewport
 - Lower quality outside the viewpoint/viewport
 - Necessary to react quickly to motion (motion-to-photon latency)
360 Projection & Packing Examples

- Equirectangular Projection (ERP)
- ERP with specific packing
- Cube-map with packing

- Projected videos will probably be packed and compressed based on rectangular regions (Tiling)
 - MPEG Omnidirectional Media Application Format (OMAF)

Text of ISO/IEC CD 23000-20
Omnidirectional Media Application Format, MPEG N16636, Jan. 2017
Tiling and Adaptive Streaming Principles

- Stream tiles with different qualities

<table>
<thead>
<tr>
<th>100 kbps</th>
<th>100 kbps</th>
<th>100 kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kbps</td>
<td>2.5 Mbps</td>
<td>100 kbps</td>
</tr>
<tr>
<td>100 kbps</td>
<td>100 kbps</td>
<td>100 kbps</td>
</tr>
</tbody>
</table>

Technologies under Consideration for DASH
MPEG N16659
Jan. 2017
Tiling and Adaptive Streaming Principles

- Or stream some tiles or even only one tile
Tiling and Adaptive Streaming
MPEG-DASH SRD

- **Description of 2D relationships between videos**
 - In the source content (not a composition description)
 - X,Y,W,H (possibly in arbitrary units)

- **Codec agnostic**
 - No assumption of tiling coding tools
 - Can be used with multiple independent videos

- **Can already be used for projected videos**
 - MPEG discussions about extending it to 3D relationships

MPEG-DASH SRD and HEVC tiling for VR/360 videos

Tile-based adaptation using independent videos
MPEG-DASH SRD and HEVC tiling for VR/360 videos

- HEVC Motion-constrained Tile-based adaptation
Tiling and Adaptive Streaming Using HEVC

- **HEVC Tiles**
 - Motion-Constrained
 - Single Decoder

- **Extensions to ISOBMFF**
 - Independent access to tile data
 - HEVC tile tracks “hvt1”
 - Reconstruction of the entire video
 - Track references “sabt”/”tbas”
 - Reconstruction Rules

- **MPEG-DASH**
 - SRD
 - Use of @dependencyId

[Diagram of HEVC tile-based adaptation process]

https://gpac.wp.imt.fr/2017/02/01/hevc-tile-based-adaptation-guide/
Tiling and Adaptive Streaming Streaming Strategies

- Which tiles to favor (region of interest)?
- What is the acceptable quality degradation btw. tiles?

J. Le Feuvre and C. Concolato,
Tiled-based Adaptive Streaming using MPEG-DASH,
ACM MMSys, Klagenfurt, Austria, May 2016
Tiling and Adaptive Streaming
360° video

Demo using GPAC

https://gpac.io/2016/05/25/srd/
MediaCodec statistics

Demo using GPAC

Audio (44100 Hz 2 channels)

Video (3840x2160)

Statistics (4 cores - 4 GB RAM)

Video 2 statistics:
Size: 3840x2160
Status: Playing - clock time: 21.16 (drift 211)
Composition Memory: 3/4
Buffer: -1 ms (min -1 - max 0) 0 AUs in DB
529 frames (0 dropped) - 19.87 ms/frame (max 113.64)
Average GOP size: 31 - 21.06 ms/irap (max 113.64)
Average bitrate: 32 Mbps - Maximum 37 Mbps
Download bandwidth: 0 Kbps
Codec: MediaCodec hardware AVCH264
Service: NBA_score_table_2_uhd.mp4

Audio (44100 Hz 2 channels)

Video (3840x2160)

Statistics (4 cores - 4 GB RAM)

Video 2 statistics:
Size: 3840x2160
Status: Playing - clock time: 11.84 (drift 84)
Composition Memory: 1/4
Buffer: -1 ms (min -1 - max 0) 0 AUs in DB
164 frames (145 dropped) - 106.49 ms/frame (max 441.95)
Average GOP size: 33 - 311.24 ms/irap (max 441.95)
Average bitrate: 24 Mbps - Maximum 37 Mbps
Download bandwidth: 0 Kbps
Codec: FFmpeg h264 - version Lavc56.1.100
Service: NBA_score_table_2_uhd.mp4
Questions ?