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How to do synthetic aperture radar with cell phones ?
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Virtual AOA estimation / Synthetic aperture radar

• Tx sends multiple packets (e.g. synch’ signal)

• Rx receives packets at multiple points along its trajectory
each received packet can be seen as a « virtual » antenna element

 conventional MIMO AOA techniques
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we want to measure the AOA of a Tx
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Outline

• Method description
Difference with conventional MIMO AOA

• Algorithms for LO offset and AOA estimation

• IMU sensor processing

• Implementation and results
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Virtual AOA estimation
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Difference between V-AOA and MIMO-AOA

1) Position of « virtual
antenna elements » 
depends on the 
movement of Rx

2) LO offset introduce phase 
rotation in received
packets

4

2 main differences in V-AOA case: 
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LO offset between Tx and Rx

• LO offset between Tx and Rx
net effect: frequency difference/offset 𝜔0 between Tx and Rx

• Receiver receives different packets (suppose no movement): 
– at time 𝑡0: 𝑟 𝑚

– at time 𝑡1: 𝑟 𝑚 𝑒𝑗2𝜋𝑓0 𝑡1−𝑡0

– at time 𝑡2: 𝑟 𝑚 𝑒𝑗2𝜋𝑓0 𝑡2−𝑡0
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… introduces a phase rotation in Rx packets

Tx
Rx does 

not move
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AOA estimation: system description

• Transmitter sends packet with known header 

• Receiver correlates received baseband samples with (known) 
header
Phase of peak of correlation function corresponds to the phase of the 

channel

• In a Line-of-Sight case (and periodic Tx), the angle is given by

𝜑𝑛 = 𝜑0 + 2𝜋𝑓0𝑛𝑇0 +
2𝜋

𝜆
𝑥𝑛 cos 𝜃 + 𝑦𝑛 sin 𝜃

𝑡𝑛 time elapsed between packet 0 and n

𝑥𝑛 change in x-coordinates between packet 0 and n

𝑦𝑛 change in y-coordinates between packet 0 and n
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System model
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AOA estimation: system description
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Difference with conventional MIMO
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Virtual AOA estimation
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LO offset and angle estimation

• Step 1: Receiver stands still
Only LO frequency offset cause phase to 

change

• Step 2: Receiver starts moving
 LO frequency offset is compensated:

Conventional MIMO estimation can be used
(MUSIC, ESPRIT, …)

• Works if LO frequency offset does not 
change during movement phase
Movement should be short

Compatible with WSSUS assumption! 
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Start- and-stop (SaS) approach

Tx
Rx does 

not move

Tx

Rx 

trajectory
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LO offset and angle estimation

The signal model used in MUSIC can be augmented to accound for LO 
frequency offset

𝐲 𝑚 = 𝐚 𝑓0, 𝜃 𝑥 𝑚 + 𝐰[𝑚]

with

𝐚 𝑓0, 𝜃 =

exp 𝑗 2𝜋𝑓0𝑡1 +
2𝜋

𝜆
𝑥 1 cos 𝜃 + 𝑦 1 sin 𝜃

exp 𝑗 2𝜋𝑓0𝑡2 +
2𝜋

𝜆
𝑥 2 cos 𝜃 + 𝑦 2 sin 𝜃

⋮

exp 𝑗 2𝜋𝑓0𝑡𝑁 +
2𝜋

𝜆
𝑥 𝑁 cos 𝜃 + 𝑦 𝑁 sin 𝜃

 MUSIC (or beamforming) can use this signal model and do joint search
over 𝑓0 and 𝜃
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Joint estimation
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Virtual AOA estimation
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LO offset and angle estimation

• Fraction of wavelength accuracy required
D-GPS insufficient! 

• If antenna non-isotropic: orientation required

• Only relative position is required

• WSSUS assumption
Movement should be limited

• We use a 3D-Inertial Measurement Unit (IMU)
Contains accelerometers and gyroscopes

 Solution will drift from truth, but integration time is short due to 
WSSUS, so error will remain limited
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Determining 𝒙𝒏 and 𝒚𝒏

Rx 

trajectory
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Strap-down IMU

• accelerometers => measures acceleration along each axis

• gyroscope => measures angular speed around each axis

– Measurements are done in body frame, but positions needs to be
known in navigation frame

– Note: gravitation of ~9.78 m/s^2 (along D-axis) is always measured by 
accelerometer(s)
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= IMU attached to vehicle
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IMU processing

• Initial position/orientation need to be known

• Problems: 

1) how to estimate initial orientation ? => use gravitation vector

2) how to estimate IMU biases ? => calibration procedure

3) Augment stability by using nonholonomic constraints

14

Can be processed in EKF/UKF

Initial
Orientation

Angular speeds 
(rad/s)

Accelerations
(m/s^2)
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Virtual AOA estimation
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Implementation

• Carrier frequency: 1 GHz

• Tx and Rx use GPSDO with OCXO LO 
(20 ppb accuracy)

• Tx sends 3G primary sequence
– 128 samples long @ 1.8 MHz sample

rate

– Periodicity: 0.667 ms, but only one 
packet out of 15 considered

𝑇0 = 10 ms

• Rx sample rate = 3.6 MHz
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Transmitter and receiver: USRP-N210

transmitter
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Implementation

• Rx performs correlation in FPGA
 Sends both correlation function

(« peaks ») and BB samples to host

• Rx accumulates 3 peaks (host 
processor)
 Increased SNR 

• Peak detector in host processor
Phase of peak is written to output file

• IMU: XSens MTi-10 (automotive-
grade)

• Parallel thread to read IMU data @ 
200 Hz
 IMU values written to output file
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Receiver details

receiver
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Experimental setup

• IMU z-axis placed parallel to vertical axis
Error of few ° cannot be avoided! 

• Turntable still for 30 s
 then turned by 180° (about 5 s)

Radius of 30, 40 and 50 cm
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in anaechoic chamber => only LOS
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Experimental setup
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note the « vertical » IMU placement

turntable USRP-N210

antenna IMU
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IMU processing
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Initial orientation: (pitch,roll)=( -0.79°,  3.18°)

g along z-axis

Small acceleration
and deceleration
along x-axis

Rotation around
z-axis

Yaw changes 
from 180° to 0°

Speeds mainly
along x-axis

Speeds along y-axis: 
- Centrifugal force
- Integration

errors
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IMU processing
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Final estimated trajectory

• Estimated trajectory drifts off at the end of movement

• Room for improvement! 
– Introduce nonholonomic constraints (already done for standstill)

– Improve bias estimation

– Improve EKF/UKF parameters (requires to know process model 
accurately)
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AOA estimation
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Stop-and-Start approach

Packet phases 
before LO offset 
compensation

Packet phases 
after LO offset 
compensation

Phase change due 
to movement

Rx movement
from IMU MUSIC spectrum

with peak close to 
90°

Phase noise and 
drift
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AOA estimation

AOA estimation error
– Zero-mean

– Standard deviation

 Larger (virtual) arrays have better accuracy

Consistent with conventional MIMO theory

23

SaS approach: notes about MUSIC
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AOA estimation

• Augmented signal model
– joint search over 𝑓0 and 𝜃
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Joint estimator
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AOA estimation

AOA estimation error
– Zero-mean

– Standard deviation

 Larger (virtual) arrays have better accuracy

Performance of joint estimation worse than SaS approach, but more 
flexible ! 
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Joint estimator
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E-310 implementation

• Why not ? 

• Use embedded IMU and SDR

• Test with low(er)-quality IMU and TCXO

• Possible to mount on (autonomous) vehicles
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Why? 
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E-310 implementation
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Architecture

Filter
banks

AD 9361
RFIC

Artix-7 FPGA

XILINX ZYNQ 7020

PS-Dual Core ARM A9

IMU GPS receiver

USRP E310

Tx chains and 2nd Rx
chain deactivated

Correlator and peak
detector

Capturing IMU and RF 
data
IMU processing
MUSIC algo.
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E-310 implementation

• Gyroscope bias: can be measured at standstill

• Accelerometer bias: 
 IMU placed at all kind of orientations (but static!), N realizations

 Find biases by solving least-squares problem (sphere-fit): 

𝑎𝑥1 − 𝑏𝑎𝑥
2 + 𝑎𝑦1 − 𝑏𝑎𝑦

2
+ 𝑎𝑧1 − 𝑏𝑎𝑧

2 = 𝑔2

⋮

𝑎𝑥𝑁 − 𝑏𝑎𝑥
2 + 𝑎𝑦𝑁 − 𝑏𝑎𝑦

2
+ 𝑎𝑧𝑁 − 𝑏𝑎𝑧

2 = 𝑔2
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Determining IMU biases

Example for IMU placed at a lot 
of orientations (more or less
along main axes)
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E-310 implementation

• Through use of an unscented Kalman filter

• Use nonholonomic constraints when standing still

𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 0

• Standstill is estimated by looking at accelerometers
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IMU processing
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E-310 implementation

• MPU-9150 IMU in controlled experiment
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IMU analysis results
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E-310 implementation

• Things go south pretty quickly …

• Movement should remain short !!! 
Anyway required for WSSUS assumption
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IMU analysis results

Movement time ~ 10 secondsMovement time ~ 4 seconds
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V-AOA estimation

Even with single-antenna transceivers, it is possible to do 
localization! 

 Integration with other sensors (IMU, GPS, …)

To-do list …

• wrap up E310 implementation

• Integrate IMU navigation uncertainty from EKF/UKF with the 
actual AOA estimation

• Multipath environment

• Robotic application: what are the « best » trajectories for 
accurate estimation ? 
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Conclusion and to-do List
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Thank you !
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Localization in cellular wireless networks

• Received signal strength (RSS)
 requires path loss models (which one?)

 fading around path loss curve can be huge! 
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… does not work very well
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Localization in cellular wireless networks

• Time-of-Arrival / Time-Difference-of-Arrival (TOA/TDOA)
works better at high bandwidths

 requires nodes to be synchronized (down to ns accuracy)

 requires stringent control of hardware delays

 sensitive to multipath
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… does not work very well

GPS synchronization: measured TDOA (ground truth = 0 ns)
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Localization in cellular wireless networks

• Angle-of-Arrival (AOA)
 requires multi-antenna array

expensive and large form factors!

 sensitive to multipath
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… does not work very well
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AOA estimation: system description

𝜑𝑛 = 𝜑𝑛−1 + 2𝜋𝑓0Δ𝑡𝑛 +  𝛽 ⋅ Δ 𝑟𝑛 +2𝜋𝜈Δ𝑡𝑛

𝑓0 frequency offset between Tx and Rx

Δ𝑡𝑛 time between packets n-1 and n

 𝛽 wave vector

Δ 𝑟𝑛 displacement vector between packets n-1 and n

𝜈 Doppler shift between Tx and Rx
 small in considered cases, can be ignored
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Received packets angle

Freq. offset Rx movement Doppler shift
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IMU processing

• At standstill, only gravitation vector is measured [1]
Gravitation vector is always along D(own)-axis 

Can be used to determine pitch/roll
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Initial orientation determination

[1] S.O.H. Madgwick, A.J.L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation 
using a gradient descent algorithm,” in Rehabilitation Robotics (ICORR), 2011 IEEE International 
Conference on, June 2011, pp. 1–7.

𝑔 = 9,78 𝑚/𝑠2
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IMU processing

• Imagine an IMU with an inclination of 0.5°

 Inclination of 0.5° leads to an acceleration along the x-axis of 

𝑔 ⋅ sin𝜃 = 0,085 m/s2

double-integrate this: after 5 s, error in distance is > 1 m

Not exactly sub-wavelength accuracy… 
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Why is initial orientation so important ? 

𝑝𝐷

𝑝𝐸

𝑔 = 9,78 𝑚/𝑠2


