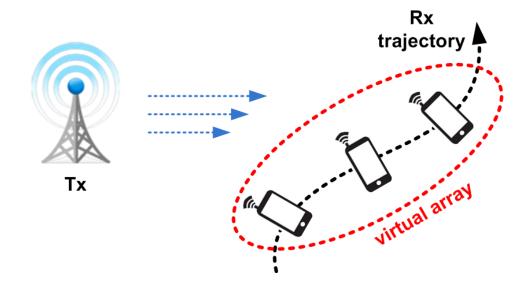
Virtual multi-antenna arrays for radio transmitter bearing estimation

or

How to do synthetic aperture radar with cell phones ?


François Quitin Université libre de Bruxelles (ULB), Belgium

Virtual AOA estimation / Synthetic aperture radar

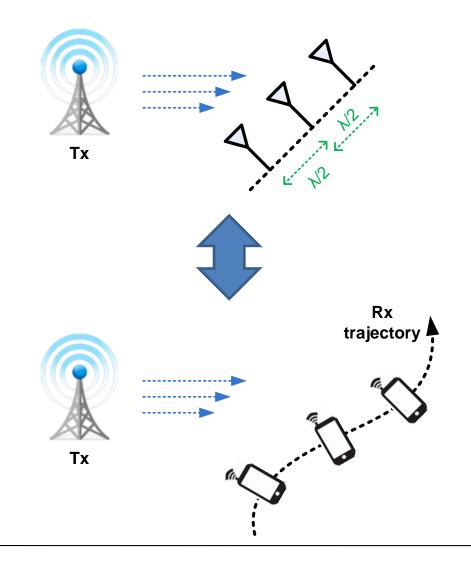
we want to measure the AOA of a Tx

- Tx sends multiple packets (e.g. synch' signal)
- Rx receives packets at multiple points along its trajectory
 ⇒ each received packet can be seen as a « virtual » antenna element
 ⇒ conventional MIMO AOA techniques

Outline

Virtual AOA estimation

- Method description
 ⇒ Difference with conventional MIMO AOA
- Algorithms for LO offset and AOA estimation
- IMU sensor processing
- Implementation and results



Difference between V-AOA and MIMO-AOA

2 main differences in V-AOA case:

 Position of « virtual antenna elements » depends on the movement of Rx

 LO offset introduce phase rotation in received packets

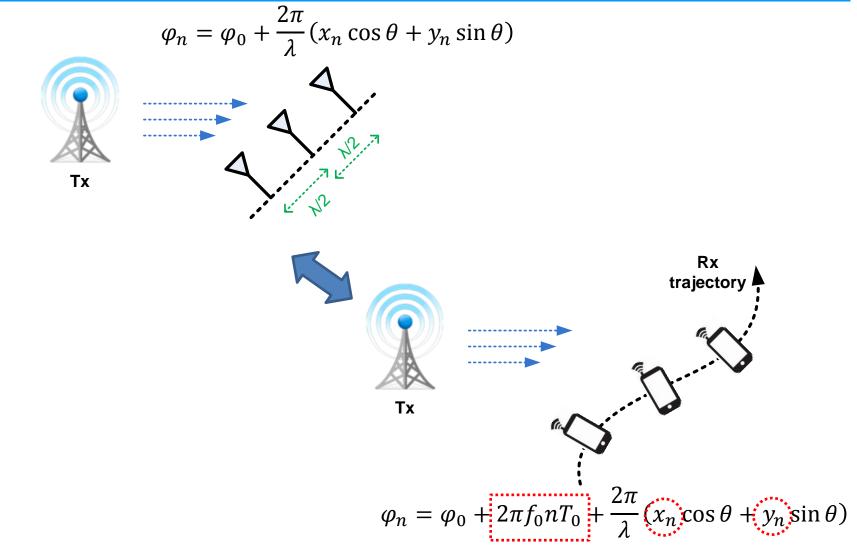
LO offset between Tx and Rx

... introduces a phase rotation in Rx packets

- LO offset between Tx and Rx \Rightarrow net effect: frequency difference/offset ω_0 between Tx and Rx
- Receiver receives different packets (suppose no movement):
 - at time $t_0: r[m]$
 - at time $t_1: r[m]e^{j2\pi f_0(t_1-t_0)}$
 - at time $t_2: r[m]e^{j2\pi f_0(t_2-t_0)}$

AOA estimation: system description

System model


- Transmitter sends packet with known header
- Receiver correlates received baseband samples with (known) header
 - ⇒ Phase of peak of correlation function corresponds to the phase of the channel
- In a Line-of-Sight case (and periodic Tx), the angle is given by

$$\varphi_n = \varphi_0 + 2\pi f_0 n T_0 + \frac{2\pi}{\lambda} (x_n \cos \theta + y_n \sin \theta)$$

 t_n time elapsed between packet 0 and n x_n change in x-coordinates between packet 0 and n y_n change in y-coordinates between packet 0 and n

AOA estimation: system description

Difference with conventional MIMO

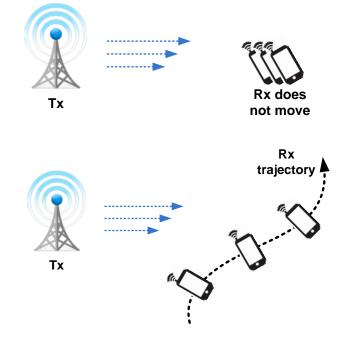
Outline

Virtual AOA estimation

• Method description

 \Rightarrow Difference with conventional MIMO AOA

- Algorithms for LO offset and AOA estimation
- IMU sensor processing
- Implementation and results



LO offset and angle estimation

Start- and-stop (SaS) approach

- Step 1: Receiver stands still
 ⇒ Only LO frequency offset cause phase to
 change
- Step 2: Receiver starts moving

 ⇒ LO frequency offset is compensated:
 ⇒ Conventional MIMO estimation can be used (MUSIC, ESPRIT, ...)
- Works if LO frequency offset does not change during movement phase
 - \Rightarrow Movement should be short
 - \Rightarrow Compatible with WSSUS assumption!

LO offset and angle estimation

Joint estimation

The signal model used in MUSIC can be augmented to accound for LO frequency offset

$$\mathbf{y}[m] = \mathbf{a}(f_0, \theta) x[m] + \mathbf{w}[m]$$

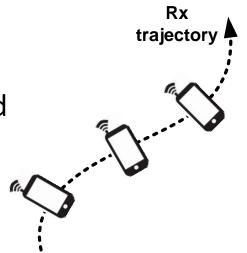
with

$$\mathbf{a}(f_0,\theta) = \begin{bmatrix} \exp\left(j\left[2\pi f_0 t_1 + \frac{2\pi}{\lambda}(x[1]\cos\theta + y[1]\sin\theta)\right]\right) \\ \exp\left(j\left[2\pi f_0 t_2 + \frac{2\pi}{\lambda}(x[2]\cos\theta + y[2]\sin\theta)\right]\right) \\ \vdots \\ \exp\left(j\left[2\pi f_0 t_N + \frac{2\pi}{\lambda}(x[N]\cos\theta + y[N]\sin\theta)\right]\right) \end{bmatrix}$$

 \Rightarrow MUSIC (or beamforming) can use this signal model and do joint search over f_0 and θ

Outline

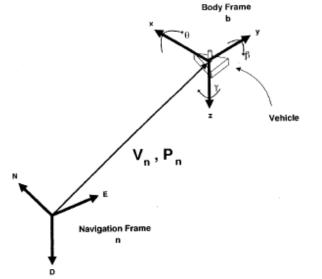
Virtual AOA estimation


- Method description
 ⇒ Difference with conventional MIMO AOA
- Algorithms for LO offset and AOA estimation
- IMU sensor processing
- Implementation and results

LO offset and angle estimation

Determining x_n and y_n

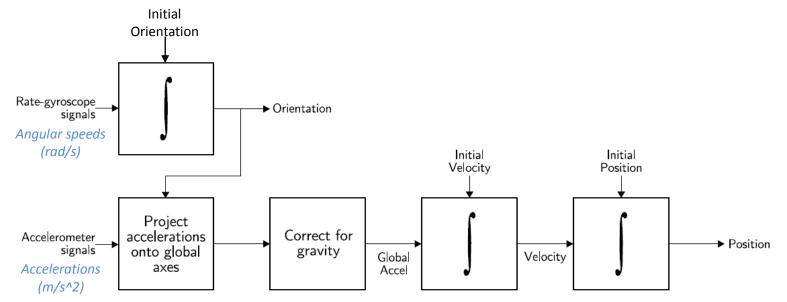
- Fraction of wavelength accuracy required ⇒ D-GPS insufficient!
- If antenna non-isotropic: orientation required
- Only relative position is required
- WSSUS assumption
 ⇒ Movement should be limited


- We use a 3D-Inertial Measurement Unit (IMU)
 - \Rightarrow Contains accelerometers and gyroscopes
 - ⇒ Solution will drift from truth, but integration time is short due to WSSUS, so error will remain limited

Strap-down IMU

= IMU attached to vehicle

- accelerometers => measures *acceleration* along each axis
- gyroscope => measures *angular speed* around each axis



- Measurements are done in *body frame*, but positions needs to be known in *navigation frame*
- Note: gravitation of ~9.78 m/s^2 (along D-axis) is always measured by accelerometer(s)

IMU processing

Can be processed in EKF/UKF

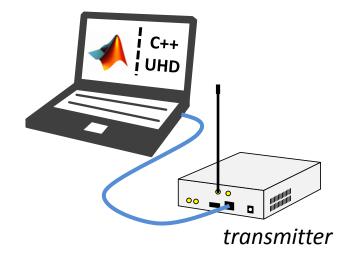
• Initial position/orientation need to be known

• Problems:

- 1) how to estimate initial orientation ? => use gravitation vector
- 2) how to estimate IMU biases ? => calibration procedure
- 3) Augment stability by using nonholonomic constraints

Outline

Virtual AOA estimation

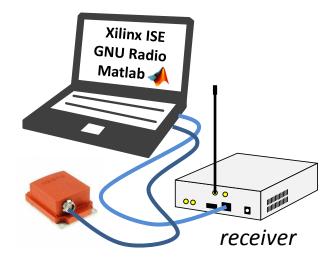

- Method description
 ⇒ Difference with conventional MIMO AOA
- Algorithms for LO offset and AOA estimation
- IMU sensor processing
- Implementation and results

Implementation

Transmitter and receiver: USRP-N210

- Carrier frequency: 1 GHz
- Tx and Rx use GPSDO with OCXO LO (20 ppb accuracy)
- Tx sends 3G primary sequence
 - 128 samples long @ 1.8 MHz sample rate
 - Periodicity: 0.667 ms, but only one packet out of 15 considered
 - $\Rightarrow T_0 = 10 \text{ ms}$
- Rx sample rate = 3.6 MHz

Implementation

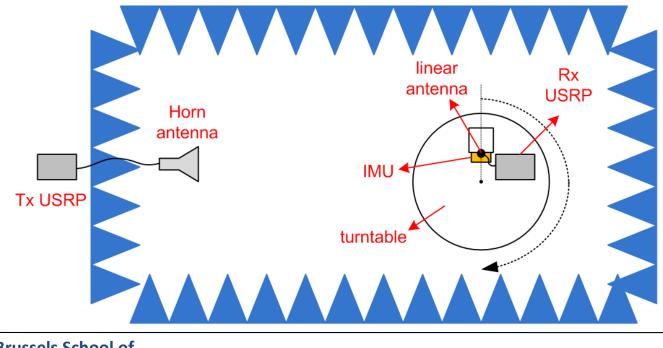

Receiver details

- Rx performs correlation in FPGA
 ⇒ Sends both correlation function
 (« peaks ») and BB samples to host
- Rx accumulates 3 peaks (host processor)

 \Rightarrow Increased SNR

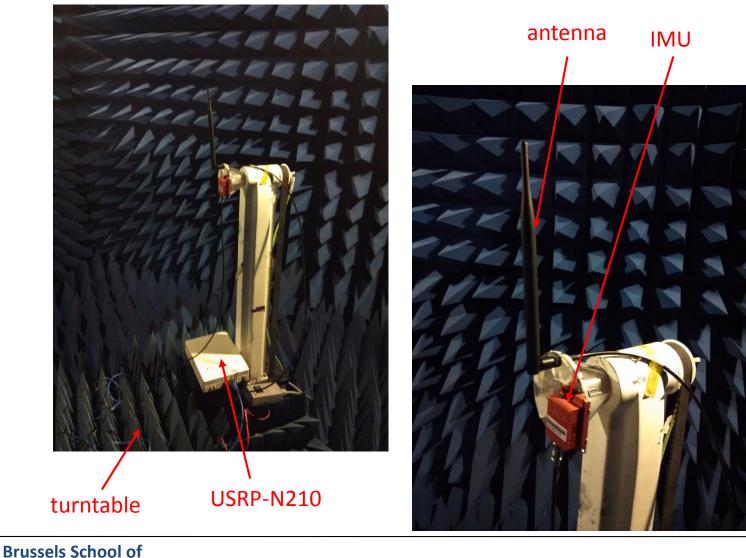
- Peak detector in host processor
 ⇒ Phase of peak is written to output file
- IMU: XSens MTi-10 (automotivegrade)
- Parallel thread to read IMU data @ 200 Hz

 \Rightarrow IMU values written to output file

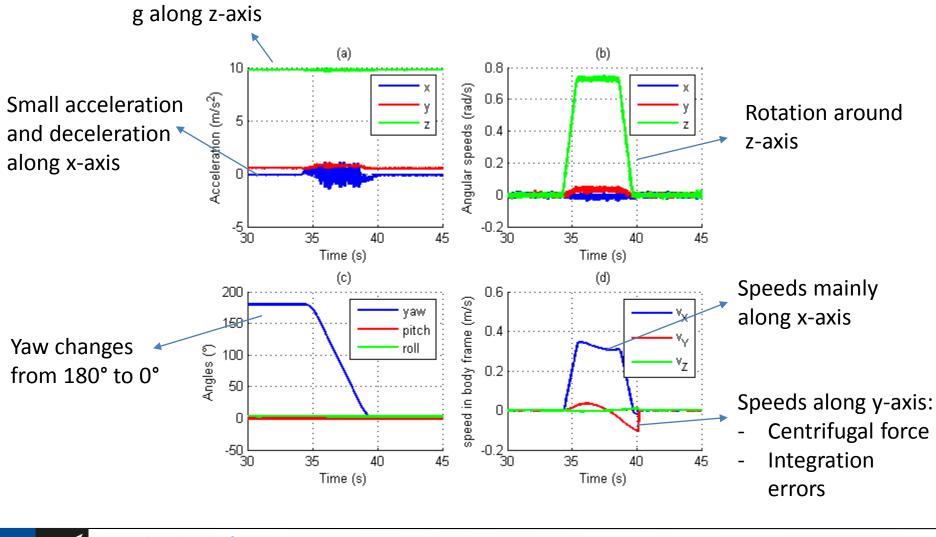


Experimental setup

in anaechoic chamber => only LOS

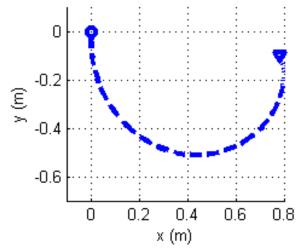

- IMU z-axis placed parallel to vertical axis ⇒ Error of few ° cannot be avoided!
- Turntable still for 30 s
 - \Rightarrow then turned by 180° (about 5 s)
 - \Rightarrow Radius of 30, 40 and 50 cm

Experimental setup


note the « vertical » IMU placement

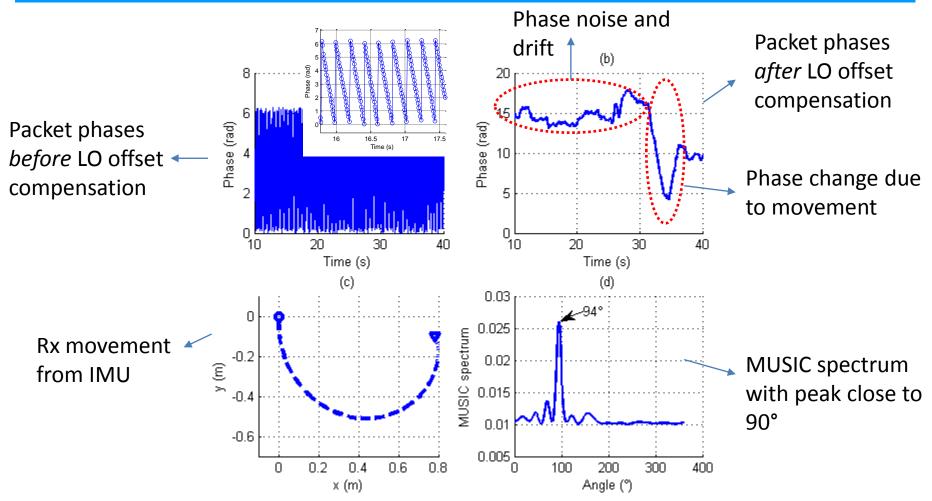
Brussels Sch Engineering

IMU processing


Initial orientation: (pitch,roll)=(-0.79°, 3.18°)

IMU processing

Final estimated trajectory


Estimated trajectory drifts off at the end of movement

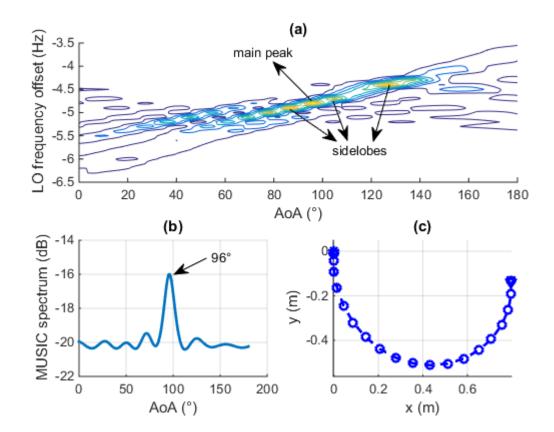
- Room for improvement!
 - Introduce nonholonomic constraints (already done for standstill)
 - Improve bias estimation
 - Improve EKF/UKF parameters (requires to know process model accurately)

Stop-and-Start approach

SaS approach: notes about MUSIC

\Rightarrow AOA estimation error

– Zero-mean		Movement Radius	Stop-and-Start
 Standard deviation 		30 cm	12.45°
		40 cm	7.91°
		50 cm	5.70°


 \Rightarrow Larger (virtual) arrays have better accuracy

 \Rightarrow Consistent with conventional MIMO theory

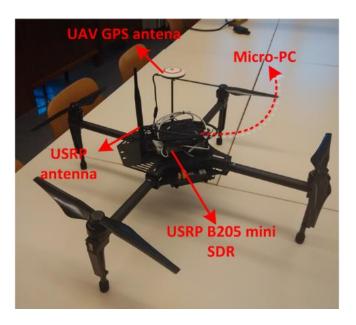
Joint estimator

- Augmented signal model
 - joint search over f_0 and θ

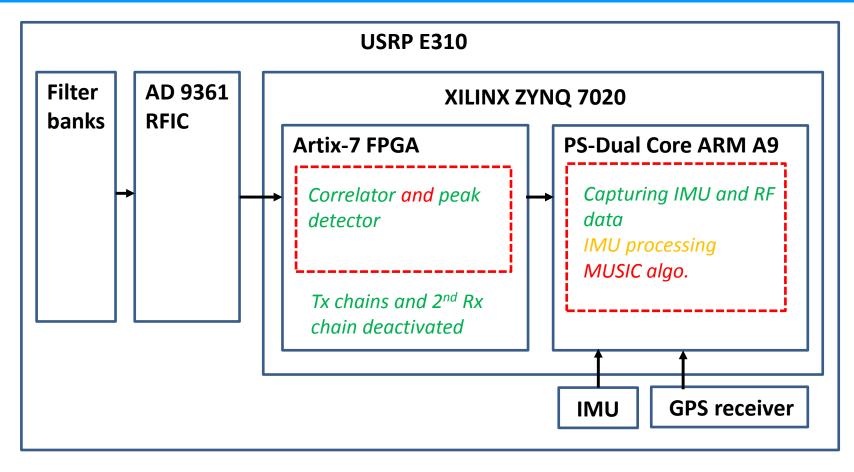
Joint estimator

\Rightarrow AOA estimation error

– Zero-mean


	Movement Radius	Stop-and-Start	Joint estimation
 Standard deviation 	30 cm	12.45°	29.78°
	40 cm	7.91°	17.55°
	50 cm	5.70°	6.45°

- \Rightarrow Larger (virtual) arrays have better accuracy
- \Rightarrow Performance of joint estimation worse than SaS approach, but more flexible !


Why?

- Why not ?
- Use embedded IMU and SDR
- Test with low(er)-quality IMU and TCXO
- Possible to mount on (autonomous) vehicles

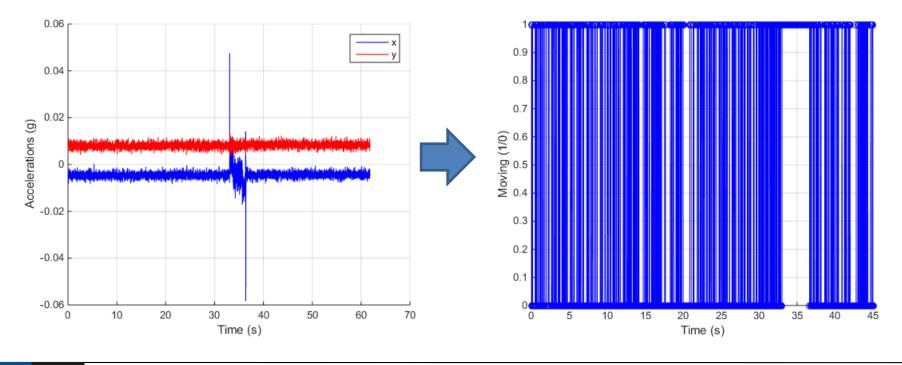
Architecture

Determining IMU biases

- Gyroscope bias: can be measured at standstill
- Accelerometer bias:

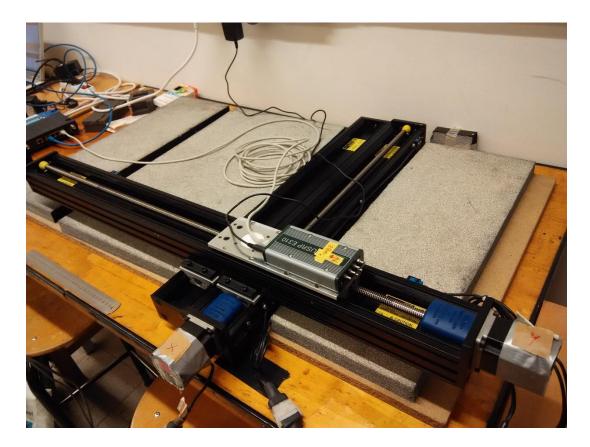
 \Rightarrow IMU placed at all kind of orientations (but static!), N realizations

 \Rightarrow Find biases by solving least-squares problem (sphere-fit):


$$\begin{cases} (a_{x1} - b_{ax})^2 + (a_{y1} - b_{ay})^2 + (a_{z1} - b_{az})^2 = g^2 \\ \vdots \\ (a_{xN} - b_{ax})^2 + (a_{yN} - b_{ay})^2 + (a_{zN} - b_{az})^2 = g^2 \\ \text{Example for IMU placed at a lot of orientations (more or less along main axes)} \\ \end{cases}$$

IMU processing

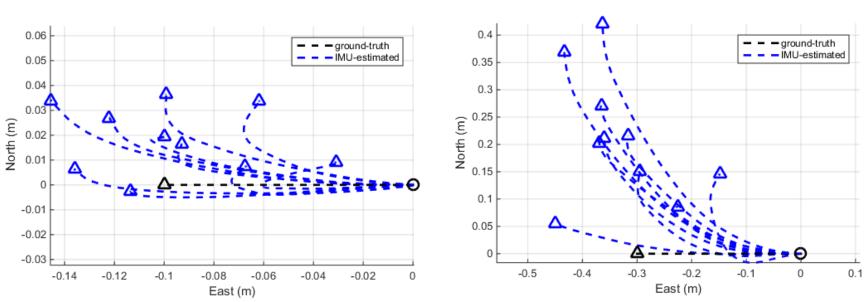
- Through use of an unscented Kalman filter
- Use nonholonomic constraints when standing still


 $\Rightarrow v_x = v_y = v_z = 0$

• Standstill is estimated by looking at accelerometers

IMU analysis results

• MPU-9150 IMU in controlled experiment


IMU analysis results

• Things go south pretty quickly ...

Movement time \sim 4 seconds

• Movement should remain short !!!

 \Rightarrow Anyway required for WSSUS assumption

Movement time ~ 10 seconds

Conclusion and to-do List

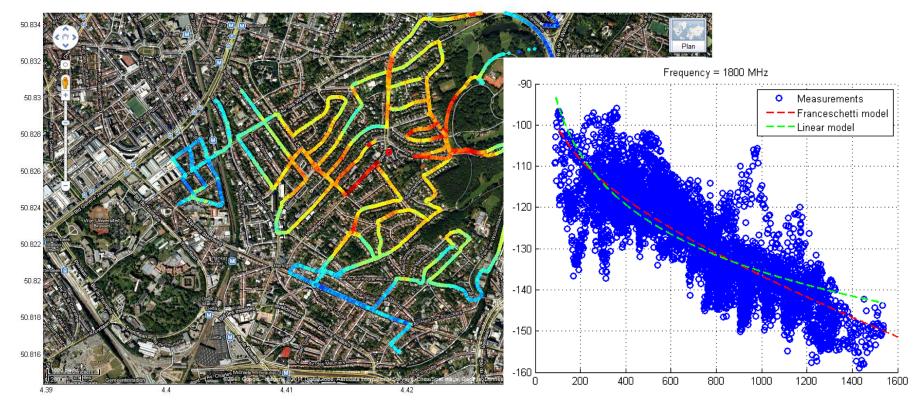
Even with single-antenna transceivers, it is possible to do localization!

```
\Rightarrow Integration with other sensors (IMU, GPS, ...)
```

To-do list ...

- wrap up E310 implementation
- Integrate IMU navigation uncertainty from EKF/UKF with the actual AOA estimation
- Multipath environment
- Robotic application: what are the « best » trajectories for accurate estimation ?

Thank you !

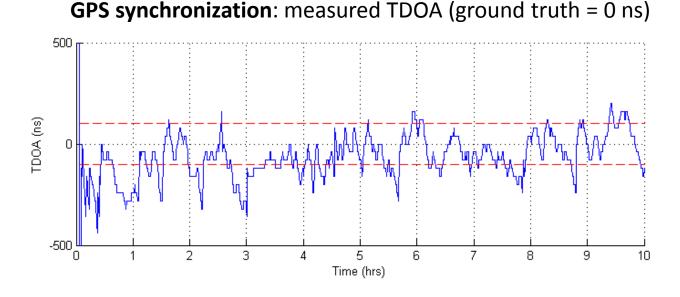

Localization in cellular wireless networks

... does not work very well

• Received signal strength (RSS)

 \Rightarrow requires path loss models (which one?)

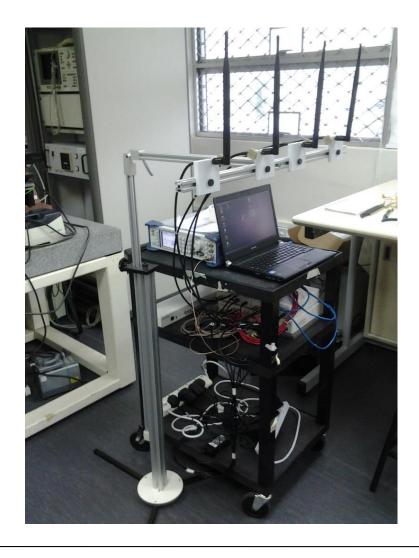
 \Rightarrow fading around path loss curve can be huge!



Localization in cellular wireless networks

... does not work very well

- Time-of-Arrival / Time-Difference-of-Arrival (TOA/TDOA)
 ⇒ works better at high bandwidths
 - \Rightarrow requires nodes to be **synchronized** (down to ns accuracy)
 - \Rightarrow requires stringent control of hardware delays
 - \Rightarrow sensitive to multipath



Localization in cellular wireless networks

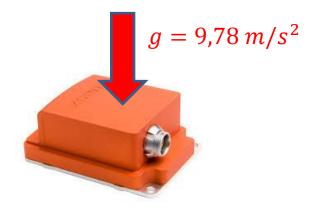
... does not work very well

Angle-of-Arrival (AOA)
 ⇒ requires multi-antenna array
 ⇒ expensive and large form factors!
 ⇒ sensitive to multipath

AOA estimation: system description

Received packets angle

$$\varphi_n = \varphi_{n-1} + \underbrace{2\pi f_0 \Delta t_n}_{\text{Freq. offset}} + \underbrace{\vec{\beta} \cdot \Delta \vec{r_n}}_{\text{Rx movement}} + \underbrace{2\pi \nu \Delta t_n}_{\text{Doppler shift}}$$

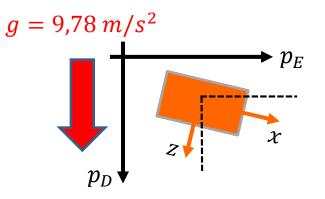

- f_0 frequency offset between Tx and Rx
- Δt_n time between packets n-1 and n
 - wave vector
- $\Delta \vec{r}_n$ displacement vector between packets n-1 and n
- ν Doppler shift between Tx and Rx
 - \Rightarrow small in considered cases, can be ignored

 $\vec{\beta}$

IMU processing

Initial orientation determination

- At standstill, only gravitation vector is measured [1]
 - \Rightarrow Gravitation vector is always along D(own)-axis
 - \Rightarrow Can be used to determine pitch/roll


[1] S.O.H. Madgwick, A.J.L. Harrison, and R. Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm," in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, June 2011, pp. 1–7.

IMU processing

Why is initial orientation so important ?

• Imagine an IMU with an inclination of 0.5°

- \Rightarrow Inclination of 0.5° leads to an acceleration along the x-axis of $g \cdot \sin \theta = 0,085 \text{ m/s}^2$
- \Rightarrow double-integrate this: after 5 s, error in distance is > 1 m
- \Rightarrow Not exactly sub-wavelength accuracy...

