
The VFS paradigm from the perspective
of a component OS

Christian Helmuth
<christian.helmuth@genode-labs.com>



Copyright

This work is licensed under the Creative Commons Attribution +
ShareAlike License (CC-BY-SA). To view a copy of the license,
visit http://creativecommons.org/licenses/by-sa/4.0/legalcode

The VFS paradigm from the perspective of a component OS 2

http://creativecommons.org/licenses/by-sa/4.0/legalcode


Outline

1. Motivation

2. History of the VFS in Genode

3. Where are we now?

4. Main course finished, dessert anyone?

The VFS paradigm from the perspective of a component OS 3



An OS without applications is of limited use

Existing open-source applications can be ported

Gradual decomposition (kernelization) of sensitive parts

Reconstruction of complex (single-purpose) software not
appealing

Consequently traditional applications will always be around

The VFS paradigm from the perspective of a component OS 4



An OS without applications is of limited use

Existing open-source applications can be ported

Gradual decomposition (kernelization) of sensitive parts

Reconstruction of complex (single-purpose) software not
appealing

Consequently traditional applications will always be around

The VFS paradigm from the perspective of a component OS 4



An OS without applications is of limited use

Existing open-source applications can be ported

Gradual decomposition (kernelization) of sensitive parts

Reconstruction of complex (single-purpose) software not
appealing

Consequently traditional applications will always be around

The VFS paradigm from the perspective of a component OS 4



An OS without applications is of limited use

Existing open-source applications can be ported

Gradual decomposition (kernelization) of sensitive parts

Reconstruction of complex (single-purpose) software not
appealing

Consequently traditional applications will always be around

The VFS paradigm from the perspective of a component OS 4



A square peg into a round hole?

Many attractive applications require a POSIX environment.

Fairly global view on resources as a tree of directories and files

File abstraction grants access to data on storage,
configuration, hardware peripherals, (graphical) user
interfaces, to some extent even networking

Mostly traditional access control (user/group permission bits)

C/C++ runtime

Extensive system API (only a small share used)

The VFS paradigm from the perspective of a component OS 5



A square peg into a round hole?

Many attractive applications require a POSIX environment.

Fairly global view on resources as a tree of directories and files

File abstraction grants access to data on storage,
configuration, hardware peripherals, (graphical) user
interfaces, to some extent even networking

Mostly traditional access control (user/group permission bits)

C/C++ runtime

Extensive system API (only a small share used)

The VFS paradigm from the perspective of a component OS 5



A square peg into a round hole?

Many attractive applications require a POSIX environment.

Fairly global view on resources as a tree of directories and files

File abstraction grants access to data on storage,
configuration, hardware peripherals, (graphical) user
interfaces, to some extent even networking

Mostly traditional access control (user/group permission bits)

C/C++ runtime

Extensive system API (only a small share used)

The VFS paradigm from the perspective of a component OS 5



A square peg into a round hole?

Our playground is Genode.

Microkernel-based

Capability-based
I No global namespace
I Fine-grained access control to resources
I Recursive system structure

Component-based
I Versatile combination of components according to use case
I Spectrum from strong dependency to loose coupling
I Only integrate what’s needed to solve the task
I Low software complexity as primary goal

The VFS paradigm from the perspective of a component OS 6



A square peg into a round hole?

Our playground is Genode.

Microkernel-based

Capability-based
I No global namespace
I Fine-grained access control to resources
I Recursive system structure

Component-based
I Versatile combination of components according to use case
I Spectrum from strong dependency to loose coupling
I Only integrate what’s needed to solve the task
I Low software complexity as primary goal

The VFS paradigm from the perspective of a component OS 6



A square peg into a round hole?

Application sandboxing seems a viable approach.

Customized C library

Runtime environment including VFS

How about the world beyond the frame of the sand pit?

Connect to Genode services

The VFS paradigm from the perspective of a component OS 7



A square peg into a round hole?

Application sandboxing seems a viable approach.

Customized C library

Runtime environment including VFS

How about the world beyond the frame of the sand pit?

Connect to Genode services

The VFS paradigm from the perspective of a component OS 7



A square peg into a round hole?

Application sandboxing seems a viable approach.

Customized C library

Runtime environment including VFS

How about the world beyond the frame of the sand pit?

Connect to Genode services

The VFS paradigm from the perspective of a component OS 7



Outline

1. Motivation

2. History of the VFS in Genode

3. Where are we now?

4. Main course finished, dessert anyone?

The VFS paradigm from the perspective of a component OS 8



Customized C library

Back end for used subset of C library functions

Some emulated mechanisms to satisfy applications (e. g.,
UIDs, permissions, sysctl)

Gradually develop C library plugins to access Genode services
I File-system libraries (FFAT, FUSE) use Block service
I Network-stack libraries (lwip, lxip) use Nic service
I Terminal service
I File-system service
I Special-purpose (e. g., libdrm/gallium)

The VFS paradigm from the perspective of a component OS 9



Customized C library

Back end for used subset of C library functions

Some emulated mechanisms to satisfy applications (e. g.,
UIDs, permissions, sysctl)

Gradually develop C library plugins to access Genode services
I File-system libraries (FFAT, FUSE) use Block service
I Network-stack libraries (lwip, lxip) use Nic service
I Terminal service
I File-system service
I Special-purpose (e. g., libdrm/gallium)

The VFS paradigm from the perspective of a component OS 9



Customized C library

Back end for used subset of C library functions

Some emulated mechanisms to satisfy applications (e. g.,
UIDs, permissions, sysctl)

Gradually develop C library plugins to access Genode services
I File-system libraries (FFAT, FUSE) use Block service
I Network-stack libraries (lwip, lxip) use Nic service
I Terminal service
I File-system service
I Special-purpose (e. g., libdrm/gallium)

The VFS paradigm from the perspective of a component OS 9



Customized C library

The VFS paradigm from the perspective of a component OS 10



Customized C library

The VFS paradigm from the perspective of a component OS 11



Noux runtime for Unix software

UNIX command-line utilities running in shell

Fork/exec child processes

Pipes, process management

Configure and build with original GNU build system

From process-local to Noux-wide resource representation

The VFS paradigm from the perspective of a component OS 12



Noux runtime for Unix software

UNIX command-line utilities running in shell

Fork/exec child processes

Pipes, process management

Configure and build with original GNU build system

From process-local to Noux-wide resource representation

The VFS paradigm from the perspective of a component OS 12



Noux runtime for Unix software

UNIX command-line utilities running in shell

Fork/exec child processes

Pipes, process management

Configure and build with original GNU build system

From process-local to Noux-wide resource representation

The VFS paradigm from the perspective of a component OS 12



Noux runtime for Unix software

UNIX command-line utilities running in shell

Fork/exec child processes

Pipes, process management

Configure and build with original GNU build system

From process-local to Noux-wide resource representation

The VFS paradigm from the perspective of a component OS 12



Noux runtime for Unix software

Core

Init

Terminal

Noux

VFS

TarFS

I/O
channels

Recompiled Unix program

FreeBSD libc

libc plugin

Noux session
open read write
select ioctrl
stat readdir

Terminal
session

ROM
session

The VFS paradigm from the perspective of a component OS 13



Plug VFS into C library

VFS and plugins in Noux and stand-alone C applications alike

Gradually replace C library plugins by VFS plugins

Process-local VFS instance

Individual configuration

The VFS paradigm from the perspective of a component OS 14



Plug VFS into C library

VFS and plugins in Noux and stand-alone C applications alike

Gradually replace C library plugins by VFS plugins

Process-local VFS instance

Individual configuration

The VFS paradigm from the perspective of a component OS 14



Plug VFS into C library

VFS and plugins in Noux and stand-alone C applications alike

Gradually replace C library plugins by VFS plugins

Process-local VFS instance

Individual configuration

The VFS paradigm from the perspective of a component OS 14



Basic configuration

VFS instance as XML node in component configuration

<config> <vfs>...</vfs> </config>

Directories

<vfs> <dir name="dev">...</dir> </vfs>

Plugins as nodes in the tree

<vfs> <dir name="dev"> <log/> </dir> </vfs>

Configure C library mechanisms to use VFS nodes

<libc stdout="/dev/log" stderr="/dev/log"/>

The VFS paradigm from the perspective of a component OS 15



Basic configuration

VFS instance as XML node in component configuration

<config> <vfs>...</vfs> </config>

Directories

<vfs> <dir name="dev">...</dir> </vfs>

Plugins as nodes in the tree

<vfs> <dir name="dev"> <log/> </dir> </vfs>

Configure C library mechanisms to use VFS nodes

<libc stdout="/dev/log" stderr="/dev/log"/>

The VFS paradigm from the perspective of a component OS 15



Basic configuration

VFS instance as XML node in component configuration

<config> <vfs>...</vfs> </config>

Directories

<vfs> <dir name="dev">...</dir> </vfs>

Plugins as nodes in the tree

<vfs> <dir name="dev"> <log/> </dir> </vfs>

Configure C library mechanisms to use VFS nodes

<libc stdout="/dev/log" stderr="/dev/log"/>

The VFS paradigm from the perspective of a component OS 15



Basic configuration

VFS instance as XML node in component configuration

<config> <vfs>...</vfs> </config>

Directories

<vfs> <dir name="dev">...</dir> </vfs>

Plugins as nodes in the tree

<vfs> <dir name="dev"> <log/> </dir> </vfs>

Configure C library mechanisms to use VFS nodes

<libc stdout="/dev/log" stderr="/dev/log"/>

The VFS paradigm from the perspective of a component OS 15



Basic configuration

VFS instance as XML node in component configuration

<config> <vfs>...</vfs> </config>

Directories

<vfs> <dir name="dev">...</dir> </vfs>

Plugins as nodes in the tree

<vfs> <dir name="dev"> <log/> </dir> </vfs>

Configure C library mechanisms to use VFS nodes

<libc stdout="/dev/log" stderr="/dev/log"/>

The VFS paradigm from the perspective of a component OS 15



Basic configuration

<config>
<vfs>

<dir name="dev"> <log/> </dir>
</vfs>
<libc stdout="/dev/log" stderr="/dev/log"/>

</config>

Precise declaration of resource representation in VFS

Plugins can be single files or whole directory sub-trees

Nodes in a directory organized as stack (or union mount)

Tweaking of C library behavior

The VFS paradigm from the perspective of a component OS 16



VFS plugins at a glance

Files backed by ROM service

<rom name=".vimrc" label="vimrc.txt"/>
<rom name="avatar.png"/>

Inline-defined file contents

<inline name="app.config">avatar = /avatar.png</inline>

Handy tools

<null/> <zero/> <symlink name="editor" target="/bin/vim"/>

The VFS paradigm from the perspective of a component OS 17



VFS plugins at a glance

Files backed by ROM service

<rom name=".vimrc" label="vimrc.txt"/>
<rom name="avatar.png"/>

Inline-defined file contents

<inline name="app.config">avatar = /avatar.png</inline>

Handy tools

<null/> <zero/> <symlink name="editor" target="/bin/vim"/>

The VFS paradigm from the perspective of a component OS 17



VFS plugins at a glance

Files backed by ROM service

<rom name=".vimrc" label="vimrc.txt"/>
<rom name="avatar.png"/>

Inline-defined file contents

<inline name="app.config">avatar = /avatar.png</inline>

Handy tools

<null/> <zero/> <symlink name="editor" target="/bin/vim"/>

The VFS paradigm from the perspective of a component OS 17



VFS plugins at a glance

RAM-backed storage (like tmpfs)

<ram/>

Integration of package-archive trees

<tar name="vim.tar"/>
<tar name="vim-syntax.tar"/>

File-to-service wrappers

<log/> <rtc/> <terminal/> <block/>

The VFS paradigm from the perspective of a component OS 18



VFS plugins at a glance

RAM-backed storage (like tmpfs)

<ram/>

Integration of package-archive trees

<tar name="vim.tar"/>
<tar name="vim-syntax.tar"/>

File-to-service wrappers

<log/> <rtc/> <terminal/> <block/>

The VFS paradigm from the perspective of a component OS 18



VFS plugins at a glance

RAM-backed storage (like tmpfs)

<ram/>

Integration of package-archive trees

<tar name="vim.tar"/>
<tar name="vim-syntax.tar"/>

File-to-service wrappers

<log/> <rtc/> <terminal/> <block/>

The VFS paradigm from the perspective of a component OS 18



VFS plugins at a glance

Expandable by custom shared objects

<jitterentropy name="random"/>
<gtotp name="gtop.service.net" secret="IMGLPG6VANGX3UCP"/>

File-system session to use persistent storage

<fs name="home"/>
<fs name="cfg" label="config" writeable="yes"/>
<fs name="bin" label="bin" root="/usr"/>

VFS configuration is component-local → access control by policies
in parent and service components (e. g., file-system service)

<policy label="app -> " root="/home" writeable="yes"/>
<policy label="app -> config" root="/app/config" writeable="no"/>
<policy label="app -> bin" root="/" writeable="no"/>

The VFS paradigm from the perspective of a component OS 19



VFS plugins at a glance

Expandable by custom shared objects

<jitterentropy name="random"/>
<gtotp name="gtop.service.net" secret="IMGLPG6VANGX3UCP"/>

File-system session to use persistent storage

<fs name="home"/>
<fs name="cfg" label="config" writeable="yes"/>
<fs name="bin" label="bin" root="/usr"/>

VFS configuration is component-local → access control by policies
in parent and service components (e. g., file-system service)

<policy label="app -> " root="/home" writeable="yes"/>
<policy label="app -> config" root="/app/config" writeable="no"/>
<policy label="app -> bin" root="/" writeable="no"/>

The VFS paradigm from the perspective of a component OS 19



VFS plugins at a glance

Expandable by custom shared objects

<jitterentropy name="random"/>
<gtotp name="gtop.service.net" secret="IMGLPG6VANGX3UCP"/>

File-system session to use persistent storage

<fs name="home"/>
<fs name="cfg" label="config" writeable="yes"/>
<fs name="bin" label="bin" root="/usr"/>

VFS configuration is component-local → access control by policies
in parent and service components (e. g., file-system service)

<policy label="app -> " root="/home" writeable="yes"/>
<policy label="app -> config" root="/app/config" writeable="no"/>
<policy label="app -> bin" root="/" writeable="no"/>

The VFS paradigm from the perspective of a component OS 19



Outline

1. Motivation

2. History of the VFS in Genode

3. Where are we now?

4. Main course finished, dessert anyone?

The VFS paradigm from the perspective of a component OS 20



Huh, a VFS server?

Robust implementation of file-system service

File-system itself implemented as VFS plugin

One VFS configuration for multiple components

Multiplex access to all aggregated resources

Differentiate client permissions by policies

The VFS paradigm from the perspective of a component OS 21



Huh, a VFS server?

Robust implementation of file-system service

File-system itself implemented as VFS plugin

One VFS configuration for multiple components

Multiplex access to all aggregated resources

Differentiate client permissions by policies

The VFS paradigm from the perspective of a component OS 21



Huh, a VFS server?

Robust implementation of file-system service

File-system itself implemented as VFS plugin

One VFS configuration for multiple components

Multiplex access to all aggregated resources

Differentiate client permissions by policies

The VFS paradigm from the perspective of a component OS 21



Huh, a VFS server?

Dynamic reconfiguration of server applies to all clients

All VFS plugins can be used in the server

Now, at the latest, HURD translators come into mind...

The VFS paradigm from the perspective of a component OS 22



Huh, a VFS server?

Dynamic reconfiguration of server applies to all clients

All VFS plugins can be used in the server

Now, at the latest, HURD translators come into mind...

The VFS paradigm from the perspective of a component OS 22



Huh, a VFS server?

Dynamic reconfiguration of server applies to all clients

All VFS plugins can be used in the server

Now, at the latest, HURD translators come into mind...

The VFS paradigm from the perspective of a component OS 22



Is there more about that server?

Shared resources could be provided by large plugins.

Dedicated rump (ext2) server superseded by plugin

Network stack based on lxip/lwip

<!-- server -->
<vfs> <lxip/> </vfs>

<!-- client -->
<vfs> <dir name="/socket"> <fs/> </dir> </vfs>
<libc socket=/socket>

The VFS paradigm from the perspective of a component OS 23



Is there more about that server?

Shared resources could be provided by large plugins.

Dedicated rump (ext2) server superseded by plugin

Network stack based on lxip/lwip

<!-- server -->
<vfs> <lxip/> </vfs>

<!-- client -->
<vfs> <dir name="/socket"> <fs/> </dir> </vfs>
<libc socket=/socket>

The VFS paradigm from the perspective of a component OS 23



Is there more about that server?

Shared resources could be provided by large plugins.

Dedicated rump (ext2) server superseded by plugin

Network stack based on lxip/lwip

<!-- server -->
<vfs> <lxip/> </vfs>

<!-- client -->
<vfs> <dir name="/socket"> <fs/> </dir> </vfs>
<libc socket=/socket>

The VFS paradigm from the perspective of a component OS 23



Outline

1. Motivation

2. History of the VFS in Genode

3. Where are we now?

4. Main course finished, dessert anyone?

The VFS paradigm from the perspective of a component OS 24



Review our goals

Audited system resource discovery and access

C library integration enables existing POSIX applications

Versatile combination inside component and via VFS server

Abstraction from Genode services

Future extension is easy (e. g., USB service adapter for libusb)

The VFS paradigm from the perspective of a component OS 25



Outlook

Extend VFS interface to support plugins using other plugins

Plugin-based filter chains become possible
I Mangling/routing of mouse/keyboard input events
I File systems using block-device nodes

Split applications scenarios driven by security considerations
I PDF reader with file-to-HTTP plugin in separate component
I Separate domains for edit-compile-test-push development

workflow

Application-stack architectures range from multiple components
connected by file-system sessions to unikernel-like monoliths.

The VFS paradigm from the perspective of a component OS 26



Outlook

Extend VFS interface to support plugins using other plugins

Plugin-based filter chains become possible
I Mangling/routing of mouse/keyboard input events
I File systems using block-device nodes

Split applications scenarios driven by security considerations
I PDF reader with file-to-HTTP plugin in separate component
I Separate domains for edit-compile-test-push development

workflow

Application-stack architectures range from multiple components
connected by file-system sessions to unikernel-like monoliths.

The VFS paradigm from the perspective of a component OS 26



Outlook

Extend VFS interface to support plugins using other plugins

Plugin-based filter chains become possible
I Mangling/routing of mouse/keyboard input events
I File systems using block-device nodes

Split applications scenarios driven by security considerations
I PDF reader with file-to-HTTP plugin in separate component
I Separate domains for edit-compile-test-push development

workflow

Application-stack architectures range from multiple components
connected by file-system sessions to unikernel-like monoliths.

The VFS paradigm from the perspective of a component OS 26



Outlook

Extend VFS interface to support plugins using other plugins

Plugin-based filter chains become possible
I Mangling/routing of mouse/keyboard input events
I File systems using block-device nodes

Split applications scenarios driven by security considerations
I PDF reader with file-to-HTTP plugin in separate component
I Separate domains for edit-compile-test-push development

workflow

Application-stack architectures range from multiple components
connected by file-system sessions to unikernel-like monoliths.

The VFS paradigm from the perspective of a component OS 26



Thank you

GENODE
Operating System Framework

Foundations
Norman Feske

Genode OS Framework
https://genode.org/

Genode Labs GmbH
https://www.genode-labs.com/

Source code on GitHub
https:
//github.com/genodelabs/genode

Genode Foundations book
https://genode.org/documentation/genode-foundations-16-05.pdf

The VFS paradigm from the perspective of a component OS 27

https://genode.org/
https://www.genode-labs.com/
https://github.com/genodelabs/genode
https://github.com/genodelabs/genode
https://genode.org/documentation/genode-foundations-16-05.pdf

	Motivation
	History of the VFS in Genode
	Where are we now?
	Main course finished, dessert anyone?

