
Dual Execution and Comparison For
Genode Components

Performance Penalty And Challenges

FOSDEM Micro-kernel Devroom, 04/02/17

Parfait Tokponnon Marc Lobelle

mahoukpego.tokponnon@uclouvain.be marc.lobelle@uclouvain.be

Outline

• Introduction to DWC

• Systematic process element replay

• Possible Usages and advantages compared to other fault tolerant techniques

• Genode deterministic Replay

• Current state

• Performance Impact

• Remaining works

2

Outline

• Introduction to DWC

• Systematic process element replay

• Possible Usages and advantages compared to other fault tolerant techniques

• Genode deterministic Replay

• Current state

• Performance Impact

• Remaining works

3

Execution replay
Introduction to DWC fault Tolerance

• DWC = Double executionWith Comparison

• purpose : Detect transient errors and take actions to recover

• Double execution can happen

• In parallel (simultaneously or with one execution slightly delayed) or in sequence

• At instruction level or at set of instructions level

• To be effective, execution replay must be deterministic

• Run the same code with the same initial data and environment

• Field of application : fault tolerant system, debugging, software verification, hardware

testing …

4

Examples

• Primary-backup hypervisor based fault tolerance system (1)

• Virtual machine based security system : Revirt (2)

• Hardware assisted deterministic Replay : Capo (3)

1. Bressoud, T. C., & Schneider, F. B. (1996). Hypervisor-based fault tolerance. ACM Transactions on Computer Systems

(TOCS), 14(1), 80-107.

2. Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A., & Chen, P. M. (2002). ReVirt: Enabling intrusion analysis through virtual-

machine logging and replay. ACM SIGOPS Operating Systems Review, 36(SI), 211-224.

3. Montesinos, P., Hicks, M., King, S. T., & Torrellas, J. (2009, March). Capo: a software-hardware interface for practical

deterministic multiprocessor replay. In ACM Sigplan Notices (Vol. 44, No. 3, pp. 73-84). ACM.

5

Outline

• Introduction to Deterministic Replay (Dual Execution Replay)

• Systematic process element replay

• Possible Usages and advantages compared to other fault tolerant techniques

• Genode deterministic Replay

• Current state

• Performance Impact

• Remaining works

6

Our model :
Systematic processing element replay

• Here, the execution replay is

• applied to a set of instructions

• is limited in time (< hundreds of µs), short enough so that it may not experience more than one error.

• The kernel is modified so that it systematically:

• Divides any process in short “processing elements” (PE),

• runs them twice and

• compares the “result” :

• OK: commit the result and start the next PE,

• KO: restart the current PE

• Unexpected exception during one of the executions: restart the current PE

7

operational transaction - OT

Deterministic PE

• PE execution is atomic and idempotent : No interaction with the outside

world.

• PE is delimited by IO, time dependent instructions (RDTSC), system calls,

or any exception (page fault, protection fault, …) raised by the user

process.

• Main goal :

• Detect transient fault and correction techniques

8

OT Processing

• The “result” is composed of:

• All modified memory pages (P1, P2, …, Pm) and

• User process related registers - UPRR (General Purpose Registers, RIP, SP, …)

• nth Processing Element is called en

• en,i (i  {1,2}) is the ith execution of en

• Pm,i is the modified Pm during the ith execution of en

• Pm,0 is the unmodified version of Pm before the first execution of en

9

OT Processing

• Before the en,1, save all UPRR > R0 and process memory to PM0 (Pages 1, 2, …, m)

• Set process memory to Read-Only to keep trace of altered pages : will cause page

faults

• During en,1, PM1 (collection of all altered pages) is progressively

constructed

• At every page fault, the concerned page is replaced by a new page with same content

and RW right and added to PM1 (P1,0 --> P1,1, P2,0 --> P2,1, ..., Pm,0 --> Pm,1) : Copy

Pj,0 to Pj,1

10

OT Processing

• At the end of en,1, and before starting en,2

1. We replace all altered pages by new ones, but with RW right : PM2 (P1,0 --> P12, P2,0 --> P22,

..., Pm,0 --> Pm,2) : Copy Pj,0 to Pj,2 (No page fault is expected)

2. Save all UPRG > R1

3. Flush the caches

• At the end of en,2, compare one by one all Pages P  PM (P1,1 and P1,2, P2,1 and P2,2,

..., Pm,1 with Pm,2) and all registers in UPRR

• If comparison OK: Set PM0 to PM1 (or PM2) and proceed to next OT

• If comparison KO: restart the current OT

11

Implications

• This involves to:
• Copy 3 times, word by word up to 10 memory frames, 4 kB each,

• Compare, word by word, up to 10 memory frames, 4 kB each.
• The working sets vary usually from 0 to 10 frames, according to our tests

• Flush the caches

• And all of these
• In no more than certain time limit (200 µs for example) while

• Fulfilling real time constraints of some applications.

12

Outline

• Introduction to Deterministic Replay (Dual Execution Replay)

• Systematic process element replay

• State of the concept

• Genode deterministic Replay

• Current state

• Performance Impact

• Remaining works

13

State of the concept

• Systematic processing element replay has already been applied to process running on

bare metal (without OS) as fault tolerance technique against Single Event Upset in small

embedded system(1)

• On-going work by E. Assogba, to port to Operating System level

• We are trying to port it virtual machine support level as proof of concept to enable the

use of any unmodified OS.

14

(1) Laurent Lesage and al, “A software based approach to eliminate all SEU effects from mission critical programs,”

12th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 2011, pp. 467–472.

Limiting process execution time

• The process releases the CPU (traps or faults) before granted time limit is reached

• Just restart the PE from its starting point

• en,2 must normally be exactly the same as en,1

• The process exhausts its granted time

• A timer interrupt is issued at time limit during en,1 : N instructions have been executed then

• en,2 runs with Performance monitoring interrupt armed on instruction counter overflow.

• Make sure the same number of instructions is executed.

• Proceed to comparison phase.

• I/O instruction, MMIO and time dependent Instruction (eg. rdtsc) stop the PE

15

Outline

• Introduction to Deterministic Replay (Dual Execution Replay)

• Systematic process element replay

• Possible Usages and advantages compared to other fault tolerant techniques

• Genode deterministic Replay

• Current state

• Performance Impact

• Remaining works

16

Genode deterministic Replay

• When applying Systematic processing element replay to Genode framework, we are

interested in the following concerns:

1. Will an OS, in a virtual machine, be run in this fashion while satisfying to its service

constraints toward user processes?

2. What will be the overall overhead?

3. How long can we shorten the atomic execution (OT) time with a critical charge of work in

the running virtual machine?

17

Results
OT execution (1/2)

• The implementation is not totally finished but some meaningful results are already

available

• The second run is always shorter than the first (because no page fault is expected). This

run may be considered as a normal Genode process execution

18

Time

kernel

User process

t1 t2r cc

Fig1 : A correct OT execution with no cache flush

t1 : first run
t2 : second run
r : time to restart – kernel
cc: time to compare and commit

Results
OT execution (2/2)

19

Time

kernel

User process

t1 t2r1 cc

Fig1 : A correct OT execution with cache flush

t1 : first run
t2 : second run
r1: first run treatment
r : time to restart – kernel
cc: time to compare and commit
cf: time to flush the caches

cf

Outline

• Introduction to Deterministic Replay (Dual Execution Replay)

• Systematic process element replay

• Possible Usages and advantages compared to other fault tolerant techniques

• Genode deterministic Replay

• Current state

• Performance Impact

• Remaining works

20

Benchmark

• Benchmark execution not possible yet (virtual machine not supported yet)

• Genode normal execution is approximated by the second run.

• the overall performance penalty can be expressed by the ratio of the total execution time divided

by the second run time.

𝝉 =
𝟏𝟎𝟎 ∗ (𝒕𝟏 + 𝒓𝟏 + 𝒄𝒇 + 𝒕𝟐 + 𝒄𝒄)

𝒕𝟐
• Current state only works for the Genode initialization phase.

• The system starting phase (initialization) is certainly the worse case since this time, processes

are expected to make frequently a lot of system calls.

21

Performance penalty
When PE ends at system call or exception (1/2)

22

Overhead : 3400%

Total execution Time : 237 µs6% 2%

85%

3%
4%

Worse overhead distribution

First Run Restart Time Cache flushing Second Run verification & commit

Performance penalty
When PE ends at system call or exception (2/2)

23

Overhead : 527%

Total execution Time : 36 µs

40%

13%
19%

28%

Worse overhead distribution without cache flush

First Run Restart Time Second Run verification & commit

Performance penalty
When PE stops after exhausting its granted time (1/2)

24

Overhead : 6221%

Total execution Time : 242 µs4% 1%

77%

2% 7%
9%

Worse overhead distribution

First Run Restart Time Cache flushing

Second Run Sigle Stepping verification & commit

Performance penalty
When PE stops after exhausting its granted time (2/2)

25

Overhead : 263%

Total execution Time : 56 µs
19%

3%
6%

32%

40%

Worse overhead distribution without cache flush

First Run Restart Time Second Run

Sigle Stepping verification & commit

Overall performance overhead during the booting

• Normal Genode demo scenario Boot  14s (Lenovo x230, core i5, 8 GB)

• With cache flushing

• Dual execution Mode : 7 min 40s

• Performance penalty : 3285% with cache flushing

• Without cache flushing

• Dual execution Mode : 16s

• Performance penalty : 114%

26

Current issues

• Instructions counting

• Until now we have not dealt yet successfully with all the peculiarities of the

Intel instruction counter feature (compared to AMD).

• Sometime, for the same Processing element, the number of instructions executed

during the first and the second are not the same.

• Page fault appears randomly when the system is fully started (after

the initialization phase) independently from the instruction counting

problem

27

Outline

• Introduction to Deterministic Replay (Dual Execution Replay)

• Systematic process element replay

• Possible Usages and advantages compared to other fault tolerant techniques

• Genode deterministic Replay

• Current state

• Performance Impact

• Remaining works

28

Future work

• Understand the cause of page fault and correct the problem

• Optimize cache flush operation

• Make full virtual machine support

• Run the Heeselicht scenario (Linux running In Genode running on DWC featured Nova Kernel)

• Compile GCC and Linux kernel in the Linux virtual machine

• Run some benchmarks in Linux Virtual machine

Thank You

29

