
Secure Microkernel

for Deeply Embedded Devices

Jim Huang (黃敬群)*, Louie Lu (呂紹榕)

*National Cheng Kung University, Taiwan

Feb 4, 2017 / FOSDEM

• The promise of the IoT won’t be ful;lled until integrated
software platforms are available that allow software
developers to develop these devices e<ciently and in
the most cost-e=ective manner possible.

– Security: memory protection + isolated execution

– Flexible development environment

• Characteristics of F9 microkernel / BitSec

• F9 microkernel, new open source and secure
 implementation built from scratch, which deploys
 modern kernel techniques dedicated to deeply
 embedded devices.

– Efficiency: performance + power consumption

Secure Microkernel for
Deeply Embedded Devices

3

“Security is not
a product, but a process”

– Bruce Schneier
 (American cryptographer, computer security and privacy specialist)

4

Case Study: Attack iOS through USB charger!

• BlackHat 2013
– MACTANS: INJECTING MALWARE INTO IOS DEVICES VIA
MALICIOUS CHARGERS

• "we demonstrate how an iOS device can be
compromised within one minute of being plugged into a
malicious charger. We first examine Apple’s existing
security mechanisms to protect against arbitrary software
installation, then describe how USB capabilities can be
leveraged to bypass these defense mechanisms."

Source:http://www.blackhat.com/us-13/brie7ngs.html#Lau

5

Case Study: BadUSB

• BlackHat 2014
BadUSB —Onaccessoriesthatturn evil
https://srlabs.de/badusb/

Keyboard emula[on is enough for infec[on
and privilege escala[on (without need for
software vulnerability)

Restart screensaver with password
stealer added via an LD_PRELOAD
library

6

• USB Redirection via RDP
Easy Print / Drive Redirection / Smart Card Redirection

Plug-and-Play Device Redirection / Input Redirection /
Audio Redirection / Port Redirection

Source:USB attacks need physical

access right? Andy Davis

7

Users Really Do Plug in USB Drives They Find

• “end users will pick up and plug in USB flash drives they find
by completing a controlled experiment in which we drop 297
flash drives on a large university campus.”

• “We find that the attack is e�ective with an estimated
success rate of 45–98% and expeditious with the first drive
connected in less than six minutes.”

• Researchers at University of Illinois, Urbana Champaign,
University of Michigan, Google, Inc.

Source:

https://zakird.com/papers/usb.pdf

Related talk at OpenIoT 2016

Handling Top Security Threats for Connected

Embedded Devices - Eystein Stenberg, Mender

10

TrustZone for ARMv8-M

•
– ARMv7-M requires software API filters for DMA access and other
security critical operations

– ARMv8-M can filter for DMA access for requests initiated by
unprivileged code on bus level

• MPU banking reduces complexity of secure
target OS
– Secure OS partition own a private MPU with full control
– OS keeps the privileged mode for fast IRQs
– Fast interrupt routing and register clearing in hardware
– Fast cross-box calls on TrustZone for ARMv8M – optimized
call gateways

Enablesbuslevelprotectioninhardware

Wait!

Why do we need yet another kernel?

source: https://twitter.com/manisha72617183/status/ 816329693494317056

TCB (Trusted Computing Base)

traditional
embedded

Linux/
Windows

Microkernel
based

all code 100,000 LoC 10,000 LoC

System

TCB

source: Diagram from Kashin Lin (NEWS Lab)

Bugs inside “Bigger than Bigger”

Kernels
• Drivers cause 85% of Windows XP crashes.

– Michael M. Swift, Brian N. Bershad, Henry M. Levy: “Improving the
Reliability of Commodity Operating Systems”, SOSP 2003

• Error rate in Linux drivers is 3x (maximum: 10x)

– Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, Dawson R.
Engler: “An Empirical Study of Operating System Errors”, SOSP 2001

• Causes for driver bugs
– 23% programming error

– 38% mismatch regarding device speci;cation

– 39% OS-driver-interface misconceptions

– Leonid Ryzhyk, Peter Chubb, Ihor Kuz and Gernot Heiser: “Dingo:
Taming device drivers”, EuroSys 2009

Linux Device Driver bugs
[Dingo: Taming device drivers, 2009]

Microkernel

• Minimalist approach
– IPC, virtual memory, thread scheduling

• Put the rest into user space
– Device drivers, networking, ;le system, user interface

• Disadvantages
– Lots of system calls and context switches

• Examples: Mach, L4, QNX, MINIX, IBM K42

 principle of least privilege (POLA)

A capability is a communicable, unforgeable token of authority. It refers
to a value that references an object along with an associated set of access
rights. A user program on a capability-based operating system must use a
capability to access an object.

Microkernel Concepts

• Minimal kernel and hardware enforce separation
• Only kernel runs in CPU privileged mode
• Components are user level processes
• No restrictions on component software
• Reuse of legacy software

• “A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e., permitting competing
implementations would prevent the implementation of
the systems' required functionality. “ – Jochen Liedtke

“Worse Is Better", Richard P. Gabriel

New Jersey style

[UNIX, Bell Labs]

MIT style

[Multics]

Simplicity No.1 consideration
Implementation >
Interface

Interface >
Implementation

Correctness mostly 100%

Consistency mostly 100%

Completeness de facto mostly

• Design competition between New Jersey and MIT style

• Interface ;rst [Multics] → Implementation ;rst [Unix] →
Interface ;rst [Mach] → Implementation ;rst [Linux] →
Interface ;rst [seL4]

Microkernel

• Put the rest into user space
– Device drivers, networking, ;le system, user interface

File

System
Networking Multi-mediaWindowing

Process

Manager

Application

Microkernel
+

Process Manager

are the only trusted

components

microkernel
Message Bus

 Applications and Drivers
 Are processes which plug into a message bus
 Reside in their own memory-protected address space
• Have a well de;ned message interface
• Cannot corrupt other software components
• Can be started, stopped and upgraded on the Wy

Microkernel: De9nitions

• A kernel technique that provides only the minimum OS
services.
– Address Spacing

– Inter-process Communication (IPC)

– Thread Management

– Unique Identi;ers

• All other services are done at user space
independently.

3 Generations of Microkernel

• Mach (1985-1994)
– replace pipes with IPC (more general)

– improved stability (vs monolithic kernels)

– poor performance

• L3 & L4 (1990-2001)
– order of magnitude improvement in IPC performance

• written in assembly, sacri;ced CPU portability

• only synchronus IPC (build async on top of sync)

– very small kernel: more functions moved to userspace

• seL4, Fiasco.OC, Coyotos, NOVA (2000-)
– platform independence

– veri;cation, security, multiple CPUs, etc.

3 Generations of Microkernel

• Generation 1: Mach (1985-1994)

• Generation 2: L3 & L4 (1990-2001)

• Generation 3: seL4, Fiasco.OC, NOVA (2000-)

Performance of 1st Generation
CMU Mach (1985), Chorus (1987), MkLinux (1996)

• Does not prohibit caching
• Reduce number of copies of data occupying memory

– Copy-to-use, copy-to-kernel

– More memory for caching

• I/O operations reduced by a factor of 10
• Context switch overhead

– Cost of kernel overhead can be up to 800 cycles.

• Address Space Switches
– Expensive Page Table and Segment Switch Overhead

– Untagged TLB = Bad performance

L4: the 2nd Generation

• Similar to Mach
– Started from scratch, rather than monolithic

– But even more minimal

• minimality principle for L4:

A concept is tolerated inside the microkernel only if moving it
outside the kernel, i.e., permitting competing implementations,
would prevent the implementation of the system's required
functionality.

• Tasks, threads, IPC
– Uses only 12k of memory

– API size of Mach: 140 functions (Asynchronus IPC, Threads, Scheduling,
Memory management, Resource access permissions)

– API size of L4: 7 function (Synchronous IPC, Threads, Scheduling, Memory
management)

Performance Gain (1st to 2nd Generation)

• Reason of being slow
kernels: Poor design
[Liedtke SOSP'95]
– complex API

– Too many features

– Poor design and
implementation

– Large cache footprint ⇒
memory-bandwidth limited

• L4 is fast due to small
cache footprint

– 10–14 I-cache lines

– 8 D-cache lines

– Small cache footprint ⇒
CPU limited

L4 Family (incomplete)

Source: Microkernel-based Operating Systems – Introduction,

Carsten Weinhold, TU Dresden (2012)

Commercial L4: from NICTA to OKLabs

• L4::Pistachio microkernel was originally developed at
Karlsruhe University. NICTA had ported it to a number
of architectures, including ARM, had optimized it for
use in resource-constrained embedded systems.

• In 2004, Qualcomm engaged NICTA in a consulting
arrangement to deploy L4 on Qualcomm's wireless
communication chips.

• The engagement with Qualcomm grew to a volume
where it was too signi;cant a development/engineering
e=ort to be done inside the research organization.
– Commercized! Open Kernel Labs

• Acquired by General Dynamics in 2012

Source: http://microkerneldude.wordpress.com/2012/10/02/

giving-it-away-part-2-on-microkernels-and-the-national-interes/

http://microkerneldude.wordpress.com/2012/10/02/

OKL4 Use Cases

Each secure cell in the system o=ers
isolation from software in other cells

Existing software components can
be reused in new designs

Microvisor tames the complexity of
dispatching multi-OS workloads across
multiple physical CPUs

Moving from 2nd to 3rd Generation

OKL4

• Dumped recursive address-space model
– reduced kernel complexity

– First L4 kernel with capability-based
access control

OKL4 Microvisor

• Removed synchronous IPC

• Removed kernel-scheduled threads

seL4

• All memory management at user level
– no kernel heap!

• Formal proof of functional correctness

• Performance on par with fastest kernels

– <200 cycle IPC on ARM11 without
assembler fastpath

Problems in 2nd Generations

• microkernel needs memory for its abstractions
– tasks: page tables

– threads: kernel-TCB

– capability tables

– IPC wait queues

– mapping database

– kernel memory is limited

– opens the possibility of DoS attacks

seL4 as 3rd Microkernel

• Functional Correctness [SOSP’09]

• Timeliness (known WCET) [RTSS’11,EuroSys’12]

• Translation Correctness [PLDI’13]

• Fast (258 cycle IPC roundtrip on 1GHz Cortex-A9)

• Safety: speci;cally temporal properties.

• Minimal TCB (~9000 SLoC)

F9: A new microkernel designed for

Deeply Embedded Devices

Deeply Embedded Devices

• Power awareness; solid and limited applications
• Multi-tasking or cooperative scheduling is still required
• IoT (Internet of Things) is the specialized derivative

with networking facility
• Communication capability is built-in for some products
• Example: AIRO wristband (health tracker)

http://www.weweartech.com/amazing-new-uses-smart-watches/

Design Considerations of IoT

• Network
– IoT networks must be scalable in order to support the dynamic nature of

the IoT (as devices are added and removed from the network).

• Security
– Integration of security protocols for encryption and authentication must

always be required.
– Before any data is transferred, the source of the data needs to be

veri;ed.
– The use of encryption prevents the loss of data to passive listeners, but is

does not prevent the alteration of data while traversing the network.

• Power Management
Facilitate processors with many low-power features
including DVFS and Hibernate.

• Need for full-featured RTOS framework

Advanced Software Requirements of IoT Products

• Over-The-Air (OTA) update with a double bank ;rmware update
mechanism. The switch to a new version is only operated when
the newly downloaded content is fully validated.

• A dedicated ;rst stage loader/diagnostic/recovery application is
used for this update mechanism. It provides full access to all
internal and external memories.

Characteristics of F9 Microkernel
https://github.com/f9micro

Unique Characteristics

• BSD Licensing (two-clause), suitable for both research
and commercial usage.
– Commercial adaptation since 2014

• E<ciency
– Optimized for ARM Cortex-M3/M4

– performance: fast IPC and well-structured designs

– energy-saving: tickless scheduling, adaptive power
management

• Security
– memory protection: MPU guarded

– Isolated execution: L4 based, capabilities model

• Flexible development
– Kprobes

– pro;le-directed optimizations

Why are current systems unreliable?

• Problem 1: “Systems are huge"
– No single person can understand the whole system

> F9 Microkernel has only 3K LoC of portable C

• Problem 2: “Bug fixes usually introduce new bugs."

> F9 introduces execution domains and on-the-fly patches

• Problem 3: “Poor fault isolation"

– No isolation between system components

– OS contains hundreds of procedures linked together as a
single binary program running on the kernel mode.

> F9 is built from scratch and well-engineered for isolation

F9 Microkernel

Parent

Partition

Applications VM Worker

Process

File system

Server

VM Worker

Process

Application

Framework

Memory Manament

server

(Interrupts)

Scheduling

Policy

Unstrused Domain

Media

Driver

Network

Driver

Network

Stack

Board

specific

Trusted Domain

Task Manament

KProbes

In-kernel

debugger

User

Space

Kernel

Space

F9/BitSec Architecture

Principles

• F9 follows the fundamental principles of L4
microkernels
– implements address spaces, thread management,

and IPC only in the privileged kernel.

• Designed and customized for ARM Cortex-M,
supporting NVIC (Nested Vectored Interrupt
Controller), Bit Banding, MPU (Memory Protection
Unit)

Thread

• Each thread has its own TCB (Thread Control Block)
and addressed by its global id.

• Also dispatcher is responsible for switching contexts.
Threads with the same priority are executed in a
round-robin fashion.

Memory Management

• split into three concepts:
– Memory pool, which represent area of physical address space

with speci;c attributes.

– Flexible page, which describes an always size aligned region of
an address space. Unlike other L4 implementations, Wexible pages
in F9 represent MPU region instead.

– Address space, which is made up of these Wexible pages.

• System calls are provided to manage address spaces:
– Grant: memory page is granted to a new user and cannot be used

anymore by its former user.

– Map: This implements shared memory – the memory page is
passed to another task but can be used by both tasks.

– Flush: The memory page that has been mapped to other users
will be Wushed out of their address space.

IPC

• The concept of UTCB (user-level thread-control
blocks) is being taken on. A UTCB is a small thread-
speci;c region in the thread's virtual address space,
which is always mapped. Therefore, the access to the
UTCB can never raise a page fault, which makes it
perfect for the kernel to access system-call arguments,
in particular IPC payload copied from/to user threads.

• Kernel provides synchronous IPC (inter-process
communication), for which short IPC carries payload in
CPU registers only and full IPC copies message
payload via the UTCBs of the communicating parties.

Microkernel Paging

• Microkernel forwards page fault to a pager server.
• Kernel or server decides which pages need to be

written to disk in low memory situations.
• Pager server handles writing pages to disk.

Recursive Address Space

• Initial address space controlled by ;rst process.
– Controls all available memory.

– Other address spaces empty at boot.

• Other processes obtain memory pages from ;rst or
from their other processes that got pages from ;rst.

• Why is memory manager Wexibility useful?
– Di=erent applications: real-time, multimedia, disk cache.

Grant

Map

Flush

ktable

ktable_free()

ktable_alloc()

ktable_init()Used

Unused

Ktable: fast memory poll

• Ktable is in charge of the allocation / deallocation for
the objects of pre-de;ned size and numbers easier

• Can be optimized with Bit-banding of ARM Cortex-M

Interrupt Handling

• Two-stage interrupt handling
– ISR: IRQ context

– Softirq

• Thread context

• Real time preemptive characteristic

• Can be scheduled like any other threads in the system

• Handled in both kernel thread and user-space

Energy eEciency: Tickless

• Introduce tickless timer which allow the ARM Cortex-M
to wake up only when needed, either at a scheduled
time or on an interrupt event.

• Therefore, it results in better current consumption than
the common approach using the system timer,
SysTick, which requires a constantly running and high
frequency clock.

 source: https://twitter.com/manisha72617183/status/819837383319298048

Timeout interrupt

Hardware

Timer CPU

Control
Read Counts

Setup timeout value

Adjust system time
Handle timeout event

….

• Hardware timer device
– Assert interrupt after a programmable inteval

– Handling tick stu= in Timeout Interrupt Service
Routine (ISR)

How Tick is Implemented

SysTick in ARM Cortex-M4
• Count-down timer

Auto
Load?

Reload value
0x36000

Current Value
0x12abc=

Interrupt

1 -

0

=

Y

Y

• Timeout ISR
– Increase system ticks

– Execute handler of timeout event

– Re-schedule if required

CPU Operating States

INT : interrupt
CTX: context switch
T : after a while

Processes
Threads
Tasks

Idle thread

ISR
Softirq

sleep

Deep sleep

INT

CTX

INT

INT
INT

CTX

CTX
CTX

T

T

Time Diagram of Legacy Ticks

event1 event3

event2

event4

HW
Timer
interrupt

CPU
activities

Context Switch overhead

Processes
Threads
Tasks

Idle thread

ISR
Softirq

sleep

Deep sleep

INT

CTX

INT

INT
INT

CTX

CTX
CTX

T

T

Regular Power Consumption

Processes
Threads
Tasks

Idle thread

ISR
Softirq

sleep

Deep sleep

INT

CTX

INT

INT
INT

CTX

CTX
CTX

T

T

Time Diagram of Legacy Ticks

event1 event3

event2

event4

HW
Timer
interrupt

CPU
activities

CPU waken up for timekeeping only

event1 event3

event2

event4

Timer
interrupt

New
CPU
activities

Previous
CPU
activities

Solution: Tickless scheduling

Drawback of Tickless scheduling

• Tickless is not free
– “It increases the number of instructions executed on

the path to and from the idle loop.”

– “On many architectures, dyntick-idle mode also
increases the number of expensive clock-
reprogramming operations”

– Source: P. E. McKenney (May 14, 2013),
“NO_HZ: Reducing Scheduling-Clock Ticks”

• Systems with aggressive real-time response
constraints often run periodic tick

http://lxr.free-electrons.com/source/Documentation/timers/NO_HZ.txt?v=3.10

Tickless scheduling in F9

• Enter tickless right before going to CPU idle state
– Set interval of next timer interrupt as delta of next event

– Or KTIMER_MAXTICKS

• Adjust system time after waked upires a constantly
running and high frequency clock.

• Tickless Compensation
– SysTick frequency distortion when enter/exit standby mode

Timer
interrupt

idle idle active

handle
other

interrupt

tickless

CPU
Activity

active

systick

Tickless compensation
(compensation from general purpose timer)

Timer
interrupt

idle idle active

handle
other

interrupt

tickless

CPU
Activity

active

systick

• System activity during idle with and without
periodic ticks

• System activity during idle with and
without deferrable timer usage in
ondemand

Kprobes: dynamic instrumentation

• Inspired by Linux Kernel, allowing developers to gather
additional information about kernel operation without
recompiling or rebooting the kernel.

• It enables locations in the kernel to be instrumented
with code, and the instrumentation code runs when the
ARM core encounters that probe point.

• Once the instrumentation code completes execution,
the kernel continues normal execution.

Application Development

• Partial POSIX support
• con;gurable debug console
• memory dump
• thread pro;ling

– name, uptime, stack allocated/current/used

• memory pro;ling
– kernel table, pool free/allocated size, fragmentation

• Link-Time Optimization (LTO) and PGO

Commercial Adaptation

• F9 microkernel is used by Genesi USA, Inc. as smart
solutions for the internet of things
http://genesi.company/solutions/embedded

• Genesi's Radix K1 is a low cost embedded device built
around Freescale ARM Cortex-M4
– 100MHz based MCU with 512kB of FLASH and 128KB of built-in RAM

and a 4G GSM module.

• The device ←→ server communication link uses WAMP, a
WebSocket subprotocol and the data exchanged is encrypted
using CycloneSSL.

• Basic memory protection is available through built-in MPU.

BitSec:
secure microkernel / hypervisor

OPERATING SYSTEM Hardware-assisted protection

ARM TrustZone® enabled
SoC or

Cortex-M4

L O G O

L O G O I N B L A C K

L O G O C O L O R V E R S I O N S

L O G O O N B L A C K

SMART CONNECTED DEVICE

Normal AppNormal App

Security Critical
Assets

Security Critical
Assets

Secure domainSecure domain

API Call on
Security critical
Routine

API Call on
Security critical
Routine

Trusted AppTrusted App

Trusted App -
Secured
Critical Assets

Trusted App -
Secured
Critical Assets

‹ Key assets exposed ‹ Key assets protected

‹ Isolated
space for
handling
high value
assets

Background of BitSec

‹ Learnt from uVisor, part of ARM mbed
– Hardware-enforced security sandboxes

– “Princle of Least Privilege”

– Boxes are protected against each other and malicious code is contained

– Per-box access control lists (ACL)

– Restrict access to selected peripherals

– Shared memories for box-box communication

‹ but, BitSec is lightweight and faster

Exposed Critical

Secure
Storage

Crypto Keys

Secure ID

Firmware
Update

Crypto API

P
R

N
GApplication

Protocol

TLS Library

Diagnose

WiFi Stack

BLE Stack

Device
Management

FIRMWARE
PROJECT

FIRMWARE
PROJECT

USER PROJECTUSER PROJECT

Non-secure stateNon-secure state Secure stateSecure state

System startSystem start

FirmwareFirmware

Communication
stack

Communication
stack

User
application

User
application

I/O driverI/O driver

Function callsFunction calls

StartStart

Function callsFunction calls

Function callsFunction calls

Properties of BitSec

‹ ARMv7-M friendly: e<cient application isolation
– designed to use the ARMv7-M MPU for isolation
– Ready for ARMv8-M TrustZone enablement

‹ third-generation microkernel

‹ heavily inspired by seL4

‹ Focuses on minimality and security,

‹ Expresses all authority through explicit capabilities,

‹ Moves other mechanisms with security implications outside
the kernel,

‹ explicitly targets systems with between 16 and 200 kiB of
RAM. 2K LoC

Basic Concepts

‹ Object-oriented
– object bundling together state and operations

‹ Capability-oriented
– use of a capability, or key
– object reference and a set of rights

‹ Messaging-oriented
– single e<cient message-transfer operation called IPC
– operate on kernel objects
– communicate between application tasks.

Capabilities

‹ without holding additional authority, programs can only
perform three operations on a key
– Copy the key into a diAerent key register
– Send a message to the object designated by the key
– Receive a message from the object designated by the key

BitSec System Calls

‹ similar design as seL4
– send, receive, yield

‹ IPC
– synchronous rendezvous messaging model
– messages are sent from one object to another directly
– without being buAered in the kernel

‹ Copy key
– Reads a key from one of current Context’s Key Registers
– Writes a duplicate of it into another

Hardware-assisted protection

FreeRTOSFreeRTOS

Security Critical
Assets

Security Critical
Assets

Secure domainSecure domain

API Call on
Security critical
Routine

API Call on
Security critical
Routine

Trusted AppTrusted App

Trusted App -
Secured
Critical Assets

Trusted App -
Secured
Critical Assets

‹ Isolated
space for
handling
high value
assets

Case Study:
RTOS Integration
‹ context switch latency between FreeRTOS tasks: 2x overhead

‹ RTOS on BitSec gains several features that are missing from
the ARM Cortex-M3/M4 port
– memory-protected environment
– Ability to run entirely in unprivileged code
– run a hybrid system

● RTOS drivers + (trusted) native BitSec drivers

Virtual interrupts for guest OS

‹ Messages Model Supervisor Calls
– Task and Interrupt Contexts share access to a Gate

● called the System Gate (SG)
– RTOS sends BitSec IPC messages through SG

● Requesting a context switch
● Enabling/disabling interrupts

– Interrupt context holds Service Key to task context

‹ Context Switches Multiplex the Task Context

‹ Message Dispatch Loop Multiplexes the Interrupt Context

Conclusion

• Minimizing TCB is vital for building secure IoT
systems, and L4 based designs bring temporal
isolation, asymmetric protection, safe bounded
resource sharing achieved through scheduling
contexts, criticality, and temporal exceptions.

• ARM Cortex-M processor enables highly deterministic
real-time applications to develop high-performance
low-cost platforms, and F9 microkernel utilizes Cortex-
M advantages to build the e<cient and secure TCB.

• The value of open source is the community made up of
people who have dedicated their time and their life to
see its success. So, commercial adaptation is feasible.

Reference

• From L3 to seL4: What Have We Learnt in 20 Years of
L4 Microkernels? Kevin Elphinstone and Gernot
Heiser, NICTA/UNSW

• Microkernel Construction"
http://os.inf.tu-dresden.de/Studium/MkK/

• Microkernel-based Operating Systems
http://www.inf.tu-dresden.de/index.php?node_id=1314

• Getting maximum mileage out of tickless, Intel Open
Source Technology Center

• F9 Microkernel ktimer, Viller Hsiao

http://os.inf.tu-dresden.de/Studium/MkK/
http://www.inf.tu-dresden.de/index.php?node_id=1314

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

