
Introducing kernel-agnostic
Genode executables

Norman Feske
<norman.feske@genode-labs.com>



Outline

1. Kernel diversity - What’s the appeal?

2. Bridging the gap between kernels
Notion of components
Raising the level of abstraction of IPC
Virtual-memory management
Custom tooling

3. From a uniform API to binary compatibility

4. Future prospects

Introducing kernel-agnostic Genode executables 2



Outline

1. Kernel diversity - What’s the appeal?

2. Bridging the gap between kernels
Notion of components
Raising the level of abstraction of IPC
Virtual-memory management
Custom tooling

3. From a uniform API to binary compatibility

4. Future prospects

Introducing kernel-agnostic Genode executables 3



Despair-driven development

2003: Security came into focus of the L4 community
Capability-based security → new kernel generation

Genode started as the designated user land of NOVA

Problem: NOVA did not exist

How to build a user land for a non-existing kernel?
Planning in terms of interim solutions
Weak assumptions about the kernel

Approach: Target two existing kernels at once

Opposite ends of a spectrum: Linux and L4/Fiasco
If it works on those, it should be portable to NOVA

Introducing kernel-agnostic Genode executables 4



Despair-driven development

2003: Security came into focus of the L4 community
Capability-based security → new kernel generation

Genode started as the designated user land of NOVA

Problem: NOVA did not exist

How to build a user land for a non-existing kernel?
Planning in terms of interim solutions
Weak assumptions about the kernel

Approach: Target two existing kernels at once

Opposite ends of a spectrum: Linux and L4/Fiasco
If it works on those, it should be portable to NOVA

Introducing kernel-agnostic Genode executables 4



Despair-driven development

2003: Security came into focus of the L4 community
Capability-based security → new kernel generation

Genode started as the designated user land of NOVA

Problem: NOVA did not exist

How to build a user land for a non-existing kernel?
Planning in terms of interim solutions
Weak assumptions about the kernel

Approach: Target two existing kernels at once

Opposite ends of a spectrum: Linux and L4/Fiasco
If it works on those, it should be portable to NOVA

Introducing kernel-agnostic Genode executables 4



Despair-driven development

2003: Security came into focus of the L4 community
Capability-based security → new kernel generation

Genode started as the designated user land of NOVA

Problem: NOVA did not exist

How to build a user land for a non-existing kernel?
Planning in terms of interim solutions
Weak assumptions about the kernel

Approach: Target two existing kernels at once

Opposite ends of a spectrum: Linux and L4/Fiasco
If it works on those, it should be portable to NOVA

Introducing kernel-agnostic Genode executables 4



Reassuring experiences

Boosting our development
I Quick development-test cycle on GNU/Linux
I Debugging via GDB, strace
I Kernel debugger on L4/Fiasco

Stressing the robustness of our code
Different kernels expose subtle problems

Cross-correlating bugs and performance problems

Getting clarity of application-level requirements

Introducing kernel-agnostic Genode executables 5



Reassuring experiences

Boosting our development
I Quick development-test cycle on GNU/Linux
I Debugging via GDB, strace
I Kernel debugger on L4/Fiasco

Stressing the robustness of our code
Different kernels expose subtle problems

Cross-correlating bugs and performance problems

Getting clarity of application-level requirements

Introducing kernel-agnostic Genode executables 5



Reassuring experiences

Boosting our development
I Quick development-test cycle on GNU/Linux
I Debugging via GDB, strace
I Kernel debugger on L4/Fiasco

Stressing the robustness of our code
Different kernels expose subtle problems

Cross-correlating bugs and performance problems

Getting clarity of application-level requirements

Introducing kernel-agnostic Genode executables 5



Reassuring experiences

Boosting our development
I Quick development-test cycle on GNU/Linux
I Debugging via GDB, strace
I Kernel debugger on L4/Fiasco

Stressing the robustness of our code
Different kernels expose subtle problems

Cross-correlating bugs and performance problems

Getting clarity of application-level requirements

Introducing kernel-agnostic Genode executables 5



Reassuring experiences

Boosting our development
I Quick development-test cycle on GNU/Linux
I Debugging via GDB, strace
I Kernel debugger on L4/Fiasco

Stressing the robustness of our code
Different kernels expose subtle problems

Cross-correlating bugs and performance problems

Getting clarity of application-level requirements

Introducing kernel-agnostic Genode executables 5



Benefiting from a high diversity of kernels

Kernels differ in many respects:

Hardware-platform support

Leveraged hardware features
Virtualization, IOMMU, SMP, TrustZone

Performance, security, scheduling

Implementation, License

Community

Introducing kernel-agnostic Genode executables 6



Maintenance burden

Surprisingly little kernel-specific code!

Repository Source lines of code
repos/ 254,367
repos/base/ 23,282
repos/base-fiasco/ 1,563
repos/base-foc/ 3,264
repos/base-linux/ 3,582
repos/base-nova/ 5,711
repos/base-okl4/ 1,958
repos/base-pistachio/ 1,869
repos/base-sel4/ 3,300
repos/base-hw/ 14,751

→ manageable

Introducing kernel-agnostic Genode executables 7



Emergence of a vision

What POSIX is for monolithic OSes,
Genode may become for microkernel-based OSes.

→ Deliberate cultivation of cross-kernel interoperability

Introducing kernel-agnostic Genode executables 8



Outline

1. Kernel diversity - What’s the appeal?

2. Bridging the gap between kernels
Notion of components
Raising the level of abstraction of IPC
Virtual-memory management
Custom tooling

3. From a uniform API to binary compatibility

4. Future prospects

Introducing kernel-agnostic Genode executables 9



Overcoming prevalent assumptions

Application requirements are rather mysterious
Preoccupation with scalability and performance concerns
POSIX (?)
Thread-local storage (?)

We disregarded those premises (liberating!)

...to be considered later.

Introducing kernel-agnostic Genode executables 10



Overcoming prevalent assumptions

Application requirements are rather mysterious
Preoccupation with scalability and performance concerns
POSIX (?)
Thread-local storage (?)

We disregarded those premises (liberating!)

...to be considered later.

Introducing kernel-agnostic Genode executables 10



Overcoming prevalent assumptions

Application requirements are rather mysterious
Preoccupation with scalability and performance concerns
POSIX (?)
Thread-local storage (?)

We disregarded those premises (liberating!)

...to be considered later.

Introducing kernel-agnostic Genode executables 10



Overcoming prevalent assumptions

Application requirements are rather mysterious
Preoccupation with scalability and performance concerns
POSIX (?)
Thread-local storage (?)

We disregarded those premises (liberating!)

...to be considered later.

Introducing kernel-agnostic Genode executables 10



Holistic architecture

Clean-slate design

Introducing kernel-agnostic Genode executables 11



Hiding the construction of components

Traditional: Tight user-kernel interplay

Interesting at application level:
Defining the executable to load
→ ROM dataspace
Exercising control over the new protection domain
→ Parent-child RPC interface

Approach: Satisfy those requirements, hide “loading” mechanics

Introducing kernel-agnostic Genode executables 12



Hiding the construction of components

Traditional: Tight user-kernel interplay

Interesting at application level:
Defining the executable to load
→ ROM dataspace
Exercising control over the new protection domain
→ Parent-child RPC interface

Approach: Satisfy those requirements, hide “loading” mechanics

Introducing kernel-agnostic Genode executables 12



Hiding the construction of components

Traditional: Tight user-kernel interplay

Interesting at application level:
Defining the executable to load
→ ROM dataspace
Exercising control over the new protection domain
→ Parent-child RPC interface

Approach: Satisfy those requirements, hide “loading” mechanics

Introducing kernel-agnostic Genode executables 12



Outline

1. Kernel diversity - What’s the appeal?

2. Bridging the gap between kernels
Notion of components
Raising the level of abstraction of IPC
Virtual-memory management
Custom tooling

3. From a uniform API to binary compatibility

4. Future prospects

Introducing kernel-agnostic Genode executables 13



Traditional: IPC involves kernel details

Microkernel IPC ridden with technicalities and jargon
thread IDs, task IDs, portals, message registers,
message tags, message dopes, message-buffer
layouts, UTCBs, MTDs, hot spots, CRDs, receive
windows, badges, reply capabilities, flex pages, string
items, timeouts, short IPC vs. long IPC

IDL compilers supposedly hide those details. But they don’t.

Introducing kernel-agnostic Genode executables 14



Traditional: IPC involves kernel details

Microkernel IPC ridden with technicalities and jargon
thread IDs, task IDs, portals, message registers,
message tags, message dopes, message-buffer
layouts, UTCBs, MTDs, hot spots, CRDs, receive
windows, badges, reply capabilities, flex pages, string
items, timeouts, short IPC vs. long IPC

IDL compilers supposedly hide those details.

But they don’t.

Introducing kernel-agnostic Genode executables 14



Traditional: IPC involves kernel details

Microkernel IPC ridden with technicalities and jargon
thread IDs, task IDs, portals, message registers,
message tags, message dopes, message-buffer
layouts, UTCBs, MTDs, hot spots, CRDs, receive
windows, badges, reply capabilities, flex pages, string
items, timeouts, short IPC vs. long IPC

IDL compilers supposedly hide those details. But they don’t.

Introducing kernel-agnostic Genode executables 14



IPC from the application’s perspective

Genode’s API level:

Consistent and simple nomenclature
(client, server, session, RPC object, capability)

Synchronous RPC in the strictest sense
(RPC stub code generated by C++ templates, no IDL)

Capabilities instead of global name spaces
(lifetime managed as C++ smart pointer)

Asynchronous notifications without payload
(like interrupts)

→ no bit fiddling, “optimizations”

Introducing kernel-agnostic Genode executables 15



IPC from the application’s perspective

Genode’s API level:

Consistent and simple nomenclature
(client, server, session, RPC object, capability)

Synchronous RPC in the strictest sense
(RPC stub code generated by C++ templates, no IDL)

Capabilities instead of global name spaces
(lifetime managed as C++ smart pointer)

Asynchronous notifications without payload
(like interrupts)

→ no bit fiddling, “optimizations”

Introducing kernel-agnostic Genode executables 15



IPC from the application’s perspective

Genode’s API level:

Consistent and simple nomenclature
(client, server, session, RPC object, capability)

Synchronous RPC in the strictest sense
(RPC stub code generated by C++ templates, no IDL)

Capabilities instead of global name spaces
(lifetime managed as C++ smart pointer)

Asynchronous notifications without payload
(like interrupts)

→ no bit fiddling, “optimizations”

Introducing kernel-agnostic Genode executables 15



IPC from the application’s perspective

Genode’s API level:

Consistent and simple nomenclature
(client, server, session, RPC object, capability)

Synchronous RPC in the strictest sense
(RPC stub code generated by C++ templates, no IDL)

Capabilities instead of global name spaces
(lifetime managed as C++ smart pointer)

Asynchronous notifications without payload
(like interrupts)

→ no bit fiddling, “optimizations”

Introducing kernel-agnostic Genode executables 15



IPC from the application’s perspective

Genode’s API level:

Consistent and simple nomenclature
(client, server, session, RPC object, capability)

Synchronous RPC in the strictest sense
(RPC stub code generated by C++ templates, no IDL)

Capabilities instead of global name spaces
(lifetime managed as C++ smart pointer)

Asynchronous notifications without payload
(like interrupts)

→ no bit fiddling, “optimizations”

Introducing kernel-agnostic Genode executables 15



Outline

1. Kernel diversity - What’s the appeal?

2. Bridging the gap between kernels
Notion of components
Raising the level of abstraction of IPC
Virtual-memory management
Custom tooling

3. From a uniform API to binary compatibility

4. Future prospects

Introducing kernel-agnostic Genode executables 16



Virtual-memory management

Traditional:
Page-fault protocol (L4)
Memory mappings via the kernel’s IPC or map operations

Dataspace: Memory object referred by a capability
Owner = creator
Created via the root of the component tree
Can be attached to a component’s local address space
Can be shared with others by delegating the capability
→ shared memory

Introducing kernel-agnostic Genode executables 17



Virtual-memory management

Traditional:
Page-fault protocol (L4)
Memory mappings via the kernel’s IPC or map operations

Dataspace: Memory object referred by a capability
Owner = creator
Created via the root of the component tree
Can be attached to a component’s local address space
Can be shared with others by delegating the capability
→ shared memory

Introducing kernel-agnostic Genode executables 17



Outline

1. Kernel diversity - What’s the appeal?

2. Bridging the gap between kernels
Notion of components
Raising the level of abstraction of IPC
Virtual-memory management
Custom tooling

3. From a uniform API to binary compatibility

4. Future prospects

Introducing kernel-agnostic Genode executables 18



Using a particular kernel

Technical aspects:
Source distribution
Tooling
(configuration, build system, tool chain, custom scripts)
Kernel bindings
Intrinsic user-level dependencies
(ties to a particular user land)
System integration and configuration
Booting, logging, debugging, work flows (e. g., menu.lst)

→ Exploration/education costs

Introducing kernel-agnostic Genode executables 19



Using a particular kernel

Technical aspects:
Source distribution

Tooling
(configuration, build system, tool chain, custom scripts)
Kernel bindings
Intrinsic user-level dependencies
(ties to a particular user land)
System integration and configuration
Booting, logging, debugging, work flows (e. g., menu.lst)

→ Exploration/education costs

Introducing kernel-agnostic Genode executables 19



Using a particular kernel

Technical aspects:
Source distribution
Tooling
(configuration, build system, tool chain, custom scripts)

Kernel bindings
Intrinsic user-level dependencies
(ties to a particular user land)
System integration and configuration
Booting, logging, debugging, work flows (e. g., menu.lst)

→ Exploration/education costs

Introducing kernel-agnostic Genode executables 19



Using a particular kernel

Technical aspects:
Source distribution
Tooling
(configuration, build system, tool chain, custom scripts)
Kernel bindings
Intrinsic user-level dependencies
(ties to a particular user land)

System integration and configuration
Booting, logging, debugging, work flows (e. g., menu.lst)

→ Exploration/education costs

Introducing kernel-agnostic Genode executables 19



Using a particular kernel

Technical aspects:
Source distribution
Tooling
(configuration, build system, tool chain, custom scripts)
Kernel bindings
Intrinsic user-level dependencies
(ties to a particular user land)
System integration and configuration
Booting, logging, debugging, work flows (e. g., menu.lst)

→ Exploration/education costs

Introducing kernel-agnostic Genode executables 19



Using a particular kernel

Technical aspects:
Source distribution
Tooling
(configuration, build system, tool chain, custom scripts)
Kernel bindings
Intrinsic user-level dependencies
(ties to a particular user land)
System integration and configuration
Booting, logging, debugging, work flows (e. g., menu.lst)

→ Exploration/education costs

Introducing kernel-agnostic Genode executables 19



Relieving the user from those technicalities

Custom tooling

Bullet-proof integration of 3rd-party code
→ ports mechanism

Kernel-agnostic system-scenario descriptions
→ run scripts

Unified tool chain
→ blessed bare-metal C++ runtime

Introducing kernel-agnostic Genode executables 20



Relieving the user from those technicalities

Custom tooling

Bullet-proof integration of 3rd-party code
→ ports mechanism

Kernel-agnostic system-scenario descriptions
→ run scripts

Unified tool chain
→ blessed bare-metal C++ runtime

Introducing kernel-agnostic Genode executables 20



The choice of the kernel is almost transparent

Introducing kernel-agnostic Genode executables 21



The choice of the kernel is almost transparent

Introducing kernel-agnostic Genode executables 21



Outline

1. Kernel diversity - What’s the appeal?

2. Bridging the gap between kernels
Notion of components
Raising the level of abstraction of IPC
Virtual-memory management
Custom tooling

3. From a uniform API to binary compatibility

4. Future prospects

Introducing kernel-agnostic Genode executables 22



How the kernel taints the user land

1. Inclusion of kernel headers
I System-call bindings
I Kernel-specific types (IDs, IPC structures, error codes)
I Utilities

2. Component code that issues system calls
I IPC
I Multi-threading, synchronization
I Virtual memory management
I Hardware access
I Kernel-object creation/destruction

Introducing kernel-agnostic Genode executables 23



How the kernel taints the user land

1. Inclusion of kernel headers
I System-call bindings
I Kernel-specific types (IDs, IPC structures, error codes)
I Utilities

2. Component code that issues system calls
I IPC
I Multi-threading, synchronization
I Virtual memory management
I Hardware access
I Kernel-object creation/destruction

Introducing kernel-agnostic Genode executables 23



How the kernel taints the user land

1. Inclusion of kernel headers
I System-call bindings
I Kernel-specific types (IDs, IPC structures, error codes)
I Utilities

2. Component code that issues system calls
I IPC
I Multi-threading, synchronization
I Virtual memory management
I Hardware access
I Kernel-object creation/destruction

Introducing kernel-agnostic Genode executables 23



Decoupling the user land from the kernel

1. Clean Genode’s API headers from kernel-specific artifacts
I Uniform capability representation
I Generic IPC message-buffer layout
I Thread manipulation, synchronization
I Hide address-space layout constraints

2. Galvanic separation of kernel-specific from application code
→ distinct ELF objects

Introducing kernel-agnostic Genode executables 24



Decoupling the user land from the kernel

1. Clean Genode’s API headers from kernel-specific artifacts
I Uniform capability representation

I Generic IPC message-buffer layout
I Thread manipulation, synchronization
I Hide address-space layout constraints

2. Galvanic separation of kernel-specific from application code
→ distinct ELF objects

Introducing kernel-agnostic Genode executables 24



Decoupling the user land from the kernel

1. Clean Genode’s API headers from kernel-specific artifacts
I Uniform capability representation
I Generic IPC message-buffer layout

I Thread manipulation, synchronization
I Hide address-space layout constraints

2. Galvanic separation of kernel-specific from application code
→ distinct ELF objects

Introducing kernel-agnostic Genode executables 24



Decoupling the user land from the kernel

1. Clean Genode’s API headers from kernel-specific artifacts
I Uniform capability representation
I Generic IPC message-buffer layout
I Thread manipulation, synchronization

I Hide address-space layout constraints

2. Galvanic separation of kernel-specific from application code
→ distinct ELF objects

Introducing kernel-agnostic Genode executables 24



Decoupling the user land from the kernel

1. Clean Genode’s API headers from kernel-specific artifacts
I Uniform capability representation
I Generic IPC message-buffer layout
I Thread manipulation, synchronization
I Hide address-space layout constraints

2. Galvanic separation of kernel-specific from application code
→ distinct ELF objects

Introducing kernel-agnostic Genode executables 24



Decoupling the user land from the kernel

1. Clean Genode’s API headers from kernel-specific artifacts
I Uniform capability representation
I Generic IPC message-buffer layout
I Thread manipulation, synchronization
I Hide address-space layout constraints

2. Galvanic separation of kernel-specific from application code
→ distinct ELF objects

Introducing kernel-agnostic Genode executables 24



Key element: Dynamic linker

The dynamic linker’s split personality:

Compile time: shared library
I Linked to components
I Satisfies dependencies on the Genode API at link time

Runtime: static binary
I Lives inside the component
I Obtains and bootstraps the kernel-agnostic executable
I Resolves references to the Genode API with itself
I Exposes the Genode API as its library interface
I Loads and initializes shared libraries

free-standing Genode API → generic ABI of the dynamic linker

Introducing kernel-agnostic Genode executables 25



Key element: Dynamic linker

The dynamic linker’s split personality:

Compile time: shared library
I Linked to components
I Satisfies dependencies on the Genode API at link time

Runtime: static binary
I Lives inside the component
I Obtains and bootstraps the kernel-agnostic executable
I Resolves references to the Genode API with itself
I Exposes the Genode API as its library interface
I Loads and initializes shared libraries

free-standing Genode API → generic ABI of the dynamic linker

Introducing kernel-agnostic Genode executables 25



Key element: Dynamic linker

The dynamic linker’s split personality:

Compile time: shared library
I Linked to components
I Satisfies dependencies on the Genode API at link time

Runtime: static binary
I Lives inside the component
I Obtains and bootstraps the kernel-agnostic executable
I Resolves references to the Genode API with itself
I Exposes the Genode API as its library interface
I Loads and initializes shared libraries

free-standing Genode API → generic ABI of the dynamic linker

Introducing kernel-agnostic Genode executables 25



Key element: Dynamic linker

The dynamic linker’s split personality:

Compile time: shared library
I Linked to components
I Satisfies dependencies on the Genode API at link time

Runtime: static binary
I Lives inside the component
I Obtains and bootstraps the kernel-agnostic executable
I Resolves references to the Genode API with itself
I Exposes the Genode API as its library interface
I Loads and initializes shared libraries

free-standing Genode API → generic ABI of the dynamic linker

Introducing kernel-agnostic Genode executables 25



Genode’s application binary interface (ABI)

ABI definition:

Symbol names, types, and meta data
Extracted from the concrete dynamic linker instance
Cleaned from redundancies

I Undefined symbols
I Weak C++ symbols

(template instances, inline functions, vtables, type infos)
Cross-checked with all kernels

I No inner-framework global symbols
I A few kernel-specific parts remain

→ Genode ABI definition: 22 KiB

Introducing kernel-agnostic Genode executables 26



Crossing CPU-architecture boundaries

Goal: The same ABI across all supported architectures
(x86_32, x86_64, ARM, RISC-V)

Risk: Mangling of C++ symbols

Good: Almost no differences between ARM and x86_32

Shudder: Huge differences between x86_32 and x86_64

Introducing kernel-agnostic Genode executables 27



Crossing CPU-architecture boundaries

Goal: The same ABI across all supported architectures
(x86_32, x86_64, ARM, RISC-V)

Risk: Mangling of C++ symbols

Good: Almost no differences between ARM and x86_32

Shudder: Huge differences between x86_32 and x86_64

Introducing kernel-agnostic Genode executables 27



Crossing CPU-architecture boundaries

Goal: The same ABI across all supported architectures
(x86_32, x86_64, ARM, RISC-V)

Risk: Mangling of C++ symbols

Good: Almost no differences between ARM and x86_32

Shudder: Huge differences between x86_32 and x86_64

Introducing kernel-agnostic Genode executables 27



Crossing CPU-architecture boundaries

Goal: The same ABI across all supported architectures
(x86_32, x86_64, ARM, RISC-V)

Risk: Mangling of C++ symbols

Good: Almost no differences between ARM and x86_32

Shudder: Huge differences between x86_32 and x86_64

Introducing kernel-agnostic Genode executables 27



Life would be good without size_t

size_t = __SIZE_TYPE__ (compiler-defined)

x86_32: __SIZE_TYPE__ = unsigned int
x86_64: __SIZE_TYPE__ = unsigned long

Mangled C++ symbols encode entire function signatures

Example: void Connection::upgrade_ram(size_t)

x86_32: _ZN10Connection11upgrade_ramEj
x86_64: _ZN10Connection11upgrade_ramEm

Introducing kernel-agnostic Genode executables 28



Life would be good without size_t

size_t = __SIZE_TYPE__ (compiler-defined)

x86_32: __SIZE_TYPE__ = unsigned int
x86_64: __SIZE_TYPE__ = unsigned long

Mangled C++ symbols encode entire function signatures

Example: void Connection::upgrade_ram(size_t)

x86_32: _ZN10Connection11upgrade_ramEj
x86_64: _ZN10Connection11upgrade_ramEm

Introducing kernel-agnostic Genode executables 28



Life would be good without size_t

size_t = __SIZE_TYPE__ (compiler-defined)

x86_32: __SIZE_TYPE__ = unsigned int
x86_64: __SIZE_TYPE__ = unsigned long

Mangled C++ symbols encode entire function signatures

Example: void Connection::upgrade_ram(size_t)

x86_32: _ZN10Connection11upgrade_ramEj
x86_64: _ZN10Connection11upgrade_ramEm

Introducing kernel-agnostic Genode executables 28



Life is (almost) good without size_t

No use of __SIZE_TYPE__ by Genode API:

Genode::size_t defined as unsigned long
→ Genode ABI is architecture agnostic
Remaining problem: libc uses compiler-defined size_t
Fine for C code (symbol == function name w/o arguments)
Problem with libc-depending C++ code (like Qt5)

→ Solution 1: architecture-dependent ABIs
→ Solution 2: tweak the compiler

Introducing kernel-agnostic Genode executables 29



Generalization of the ABI mechanism

Build system support:

ABI definition is translated to an assembly file
(almost architecture independent)
Assembly file is compiled/linked into an .abi.so file
(shared library that contains only symbols but no code)
Library-using targets are linked against the .abi.so file
instead of the real library
ABI formalism for arbitrary libraries!
(merely add an ABI definition for a library)

→ Targets can be built without the libraries they depend on.

Introducing kernel-agnostic Genode executables 30



Generalization of the ABI mechanism

Build system support:

ABI definition is translated to an assembly file
(almost architecture independent)

Assembly file is compiled/linked into an .abi.so file
(shared library that contains only symbols but no code)
Library-using targets are linked against the .abi.so file
instead of the real library
ABI formalism for arbitrary libraries!
(merely add an ABI definition for a library)

→ Targets can be built without the libraries they depend on.

Introducing kernel-agnostic Genode executables 30



Generalization of the ABI mechanism

Build system support:

ABI definition is translated to an assembly file
(almost architecture independent)
Assembly file is compiled/linked into an .abi.so file
(shared library that contains only symbols but no code)

Library-using targets are linked against the .abi.so file
instead of the real library
ABI formalism for arbitrary libraries!
(merely add an ABI definition for a library)

→ Targets can be built without the libraries they depend on.

Introducing kernel-agnostic Genode executables 30



Generalization of the ABI mechanism

Build system support:

ABI definition is translated to an assembly file
(almost architecture independent)
Assembly file is compiled/linked into an .abi.so file
(shared library that contains only symbols but no code)
Library-using targets are linked against the .abi.so file
instead of the real library

ABI formalism for arbitrary libraries!
(merely add an ABI definition for a library)

→ Targets can be built without the libraries they depend on.

Introducing kernel-agnostic Genode executables 30



Generalization of the ABI mechanism

Build system support:

ABI definition is translated to an assembly file
(almost architecture independent)
Assembly file is compiled/linked into an .abi.so file
(shared library that contains only symbols but no code)
Library-using targets are linked against the .abi.so file
instead of the real library
ABI formalism for arbitrary libraries!
(merely add an ABI definition for a library)

→ Targets can be built without the libraries they depend on.

Introducing kernel-agnostic Genode executables 30



Generalization of the ABI mechanism

Build system support:

ABI definition is translated to an assembly file
(almost architecture independent)
Assembly file is compiled/linked into an .abi.so file
(shared library that contains only symbols but no code)
Library-using targets are linked against the .abi.so file
instead of the real library
ABI formalism for arbitrary libraries!
(merely add an ABI definition for a library)

→ Targets can be built without the libraries they depend on.

Introducing kernel-agnostic Genode executables 30



Immediate benefits

Build directory used to depend on kernel and hardware platform.

New unified build directories:

Depend only on hardware platform
Kernel-agnostic targets are linked dynamically
(almost all components)
Kernel-specific targets are named after the kernel
(ld-nova.lib.so, core-nova, timer driver)
→ build results can peacefully coexist
Choice of kernel not before running a scenario:
make run/demo KERNEL=nova

Introducing kernel-agnostic Genode executables 31



Immediate benefits

Build directory used to depend on kernel and hardware platform.

New unified build directories:

Depend only on hardware platform

Kernel-agnostic targets are linked dynamically
(almost all components)
Kernel-specific targets are named after the kernel
(ld-nova.lib.so, core-nova, timer driver)
→ build results can peacefully coexist
Choice of kernel not before running a scenario:
make run/demo KERNEL=nova

Introducing kernel-agnostic Genode executables 31



Immediate benefits

Build directory used to depend on kernel and hardware platform.

New unified build directories:

Depend only on hardware platform
Kernel-agnostic targets are linked dynamically
(almost all components)
Kernel-specific targets are named after the kernel
(ld-nova.lib.so, core-nova, timer driver)
→ build results can peacefully coexist

Choice of kernel not before running a scenario:
make run/demo KERNEL=nova

Introducing kernel-agnostic Genode executables 31



Immediate benefits

Build directory used to depend on kernel and hardware platform.

New unified build directories:

Depend only on hardware platform
Kernel-agnostic targets are linked dynamically
(almost all components)
Kernel-specific targets are named after the kernel
(ld-nova.lib.so, core-nova, timer driver)
→ build results can peacefully coexist
Choice of kernel not before running a scenario:
make run/demo KERNEL=nova

Introducing kernel-agnostic Genode executables 31



Outline

1. Kernel diversity - What’s the appeal?

2. Bridging the gap between kernels
Notion of components
Raising the level of abstraction of IPC
Virtual-memory management
Custom tooling

3. From a uniform API to binary compatibility

4. Future prospects

Introducing kernel-agnostic Genode executables 32



Future prospects

Package management

Distinction between source and API/ABI packages
→ Loose coupling of packages
Binary packages independent of the used kernel

Multiple levels of API/ABI stability

Two orthogonal directions
1. Successive hardening of the foundation, transparent to users
2. Scaling the software stack with a fixed target

Introducing kernel-agnostic Genode executables 33



Future prospects

Package management

Distinction between source and API/ABI packages
→ Loose coupling of packages
Binary packages independent of the used kernel

Multiple levels of API/ABI stability

Two orthogonal directions
1. Successive hardening of the foundation, transparent to users
2. Scaling the software stack with a fixed target

Introducing kernel-agnostic Genode executables 33



Future prospects

Package management

Distinction between source and API/ABI packages
→ Loose coupling of packages
Binary packages independent of the used kernel

Multiple levels of API/ABI stability

Two orthogonal directions
1. Successive hardening of the foundation, transparent to users
2. Scaling the software stack with a fixed target

Introducing kernel-agnostic Genode executables 33



Unique solutions, enabled by Free Software

Shaping the entire vertical software stack:
Tool chain ↔ Work-flow automation ↔ Quality assurance
Build system ↔ Source-code management ↔ Package management
Dynamic linker (cross-kernel binary compatibility)
C runtime, C++ runtime (encapsulating legacies)
VFS infrastructure (component-level customiztions)
Init and system configuration (session routing)
Genode ABI and API (enforcing a safe C++ dialect)
Kernel (base-hw, scheduling, kernel-resource management)
Component interfaces (multi-component applications)
User interface ↔ System management

→ Cross-pollination between different levels
→ Simple and holistic solutions!

Introducing kernel-agnostic Genode executables 34



Unique solutions, enabled by Free Software

Shaping the entire vertical software stack:
Tool chain ↔ Work-flow automation ↔ Quality assurance
Build system ↔ Source-code management ↔ Package management
Dynamic linker (cross-kernel binary compatibility)
C runtime, C++ runtime (encapsulating legacies)
VFS infrastructure (component-level customiztions)
Init and system configuration (session routing)
Genode ABI and API (enforcing a safe C++ dialect)
Kernel (base-hw, scheduling, kernel-resource management)
Component interfaces (multi-component applications)
User interface ↔ System management

→ Cross-pollination between different levels
→ Simple and holistic solutions!

Introducing kernel-agnostic Genode executables 34



Unique solutions, enabled by Free Software

Shaping the entire vertical software stack:
Tool chain ↔ Work-flow automation ↔ Quality assurance
Build system ↔ Source-code management ↔ Package management
Dynamic linker (cross-kernel binary compatibility)
C runtime, C++ runtime (encapsulating legacies)
VFS infrastructure (component-level customiztions)
Init and system configuration (session routing)
Genode ABI and API (enforcing a safe C++ dialect)
Kernel (base-hw, scheduling, kernel-resource management)
Component interfaces (multi-component applications)
User interface ↔ System management

→ Cross-pollination between different levels

→ Simple and holistic solutions!

Introducing kernel-agnostic Genode executables 34



Unique solutions, enabled by Free Software

Shaping the entire vertical software stack:
Tool chain ↔ Work-flow automation ↔ Quality assurance
Build system ↔ Source-code management ↔ Package management
Dynamic linker (cross-kernel binary compatibility)
C runtime, C++ runtime (encapsulating legacies)
VFS infrastructure (component-level customiztions)
Init and system configuration (session routing)
Genode ABI and API (enforcing a safe C++ dialect)
Kernel (base-hw, scheduling, kernel-resource management)
Component interfaces (multi-component applications)
User interface ↔ System management

→ Cross-pollination between different levels
→ Simple and holistic solutions!

Introducing kernel-agnostic Genode executables 34



The Book “Genode Foundations”

GENODE
Operating System Framework

Foundations
Norman Feske

https://genode.org/documentation/genode-foundations-16-05.pdf

Introducing kernel-agnostic Genode executables 35



Thank you

Genode OS Framework
https://genode.org

Genode Labs GmbH
https://www.genode-labs.com

Source code at GitHub
https://github.com/genodelabs/genode

Introducing kernel-agnostic Genode executables 36


	Kernel diversity - What's the appeal?
	Bridging the gap between kernels
	Notion of components
	Raising the level of abstraction of IPC
	Virtual-memory management
	Custom tooling

	From a uniform API to binary compatibility
	Future prospects

