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From idea to objective function
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Formulating an ML problem

e (Common aspects
o Model (6)
o Data (D)

Objective function: L(6, D)

Prior knowledge: r(0)

ML program: f(6, D) = L(6, D) + r(0)
ML Algorithm: How to optimize (8, D)

Source: Xing (2015)
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Example: Improve retention at Twitter

e (Goal: Reduce the churn of users on Twitter

e Assumption: Users churn because they don't engage with the platform

e |dea: Increase the retweets, by promoting tweets more likely to be
retweeted

e Data (D): Features and labels, x,, y.

e Model (0): Logistic regression, parameters w
o p(ylx, w) = Bernouli(y | sigm(wx))

e Objective function - L(D, 8): NLL(w) = 2 log(1 + exp(-y w'x.))
e Prior knowledge (Regularization): r(w) = A*w'w
e Algorithm: Gradient Descent
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Data problems

o GIGO: Garbage In - Garbage Out
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Data readiness

e Problem: “Data” as a concept is hard to reason about.
e Goal: Make the stakeholders aware of the state of the data at all stages

Source: Lawrence (2017)
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o Representation and faithfulness
e BandA
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Source: Lawrence (2017)
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o  “How long will it take to bring our user data to C1 level?”
e BandB

o  “Until we know the collection process we can’t move the data to B1.”
e BandA

o “We realized that we would need location data in order to have an A1 dataset.”
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Selecting algorithm & software:
“Easy” choices



Selecting algorithms



scikit-learn
algorithm cheat-sheet
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An ML algorithm “farm”
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The neural network zoo
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Selecting algorithms

e Always go for the simplest model you can afford
o  Your first model is more about getting the infrastructure right
o Simple models are usually interpretable. Interpretable models are easier to debug.
o Complex model erode boundaries
m CACE principle: Changing Anything Changes Everything

Source: Sculley et al. (2015)



Selecting software



.‘F

PYTSRCH theano TensorFlow
DL4
‘I"[OFCh rCMl\T:i'K _?_ blg DEEPLEARNII‘]LAIJ C affe
gt Bio para 1O
Chainer -prbc_ L.b- 4‘3‘

SporK -ﬁ o

MLlib
PHP ML ‘

4JPYMC3

The ML software zoo




Your model vs. the world
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Things to watch out for

e Data dependencies
o Unstable dependencies

e Feedback loops
o Direct
o Indirect

Sculley et al. (2015)
& Zinkevich (2017)
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Bringing it all together

Define your problem as optimizing your objective function using data
Determine (and monitor) the readiness of your data

Don't spend too much time at first choosing an ML framework/algorithm
Worry much more about what happens when your model meets the world.



Thank you.
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