A field guide to the machine learning zoo

Theodore Vasiloudis SICS/KTH

From idea to objective function

• Common aspects

Source: Xing (2015)

- Common aspects
 - Model (θ)

Source: Xing (2015)

• Common aspects

- Model (θ)
- Data (D)

- Common aspects
 - Model (θ)
 - Data (D)
- Objective function: $L(\theta, D)$

- Common aspects
 - Model (θ)
 - Data (D)
- Objective function: $L(\theta, D)$
- Prior knowledge: r(θ)

- Common aspects
 - Model (θ)
 - Data (D)
- Objective function: $L(\theta, D)$
- Prior knowledge: $r(\theta)$
- ML program: $f(\theta, D) = L(\theta, D) + r(\theta)$

- Common aspects
 - Model (θ)
 - Data (D)
- Objective function: $L(\theta, D)$
- Prior knowledge: $r(\theta)$
- ML program: $f(\theta, D) = L(\theta, D) + r(\theta)$
- ML Algorithm: How to optimize $f(\theta, D)$

- Goal: Reduce the churn of users on Twitter
- Assumption: Users churn because they don't engage with the platform
- Idea: Increase the retweets, by promoting tweets more likely to be retweeted

- Goal: Reduce the churn of users on Twitter
- Assumption: Users churn because they don't engage with the platform
- Idea: Increase the retweets, by promoting tweets more likely to be retweeted
- Data (D):
- Model (θ):
- Objective function L(**D**, **θ**):
- Prior knowledge (Regularization):
- Algorithm:

- Goal: Reduce the churn of users on Twitter
- Assumption: Users churn because they don't engage with the platform
- Idea: Increase the retweets, by promoting tweets more likely to be retweeted
- Data (D): Features and labels, **x**_i, y_i
- Model (θ):
- Objective function L(**D**, **θ**):
- Prior knowledge (Regularization):
- Algorithm:

- Goal: Reduce the churn of users on Twitter
- Assumption: Users churn because they don't engage with the platform
- Idea: Increase the retweets, by promoting tweets more likely to be retweeted
- Data (D): Features and labels, **x**_i, y_i
- Model (θ): Logistic regression, parameters **w**
 - $p(y|\mathbf{x}, \mathbf{w}) = Bernouli(y | sigm(\mathbf{w}^T \mathbf{x}))$
- Objective function L(**D**, **θ**):
- Prior knowledge (Regularization):
- Algorithm:

- Goal: Reduce the churn of users on Twitter
- Assumption: Users churn because they don't engage with the platform
- Idea: Increase the retweets, by promoting tweets more likely to be retweeted
- Data (D): Features and labels, **x**_i, y_i
- Model (θ): Logistic regression, parameters **w**
 - $p(y|\mathbf{x}, \mathbf{w}) = Bernouli(y | sigm(\mathbf{w}^T \mathbf{x}))$
- Objective function $L(\mathbf{D}, \mathbf{\theta})$: NLL(\mathbf{w}) = $\Sigma \log(1 + \exp(-y \mathbf{w}^T \mathbf{x}_i))$
- Prior knowledge (Regularization): $r(w) = \lambda^* w^T w$
- Algorithm:

- Goal: Reduce the churn of users on Twitter
- Assumption: Users churn because they don't engage with the platform
- Idea: Increase the retweets, by promoting tweets more likely to be retweeted
- Data (D): Features and labels, **x**_i, y_i
- Model (θ): Logistic regression, parameters **w**
 - $p(y|\mathbf{x}, \mathbf{w}) = Bernouli(y | sigm(\mathbf{w}^T \mathbf{x}))$
- Objective function $L(\mathbf{D}, \mathbf{\theta})$: NLL(\mathbf{w}) = $\Sigma \log(1 + \exp(-y \mathbf{w}^T \mathbf{x}_i))$
- Prior knowledge (Regularization): $r(w) = \lambda^* w^T w$
- Algorithm: Gradient Descent

Data problems

Data problems

• GIGO: Garbage In - Garbage Out

- Problem: "Data" as a concept is hard to reason about.
- Goal: Make the stakeholders aware of the state of the data at all stages

- Band C
 - Accessibility

- Band C
 - Accessibility
- Band B
 - Representation and faithfulness

- Band C
 - Accessibility
- Band B
 - Representation and faithfulness
- Band A
 - Data in context

- Band C
 - "How long will it take to bring our user data to C1 level?"
- Band B
 - "Until we know the collection process we can't move the data to B1."
- Band A
 - "We realized that we would need location data in order to have an A1 dataset."

- Band C
 - "How long will it take to bring our user data to C1 level?" 0
- Band B
 - "Until we know the collection process we can't move the data to B1." 0
- Band A
 - "We realized that we would need location data in order to have an A1 dataset." \bigcirc

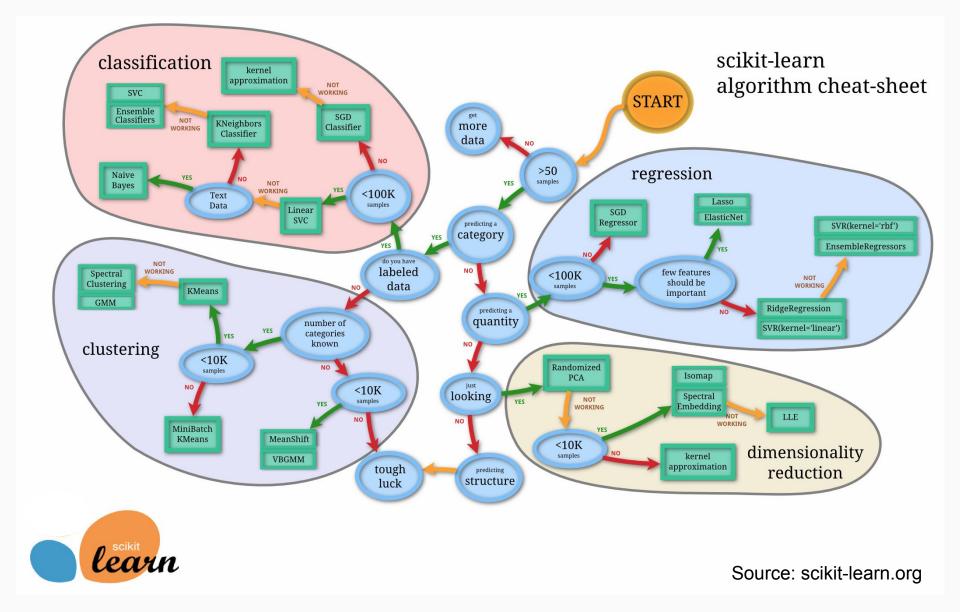
Big Data Borat @BigDataBorat

2+ Follow V

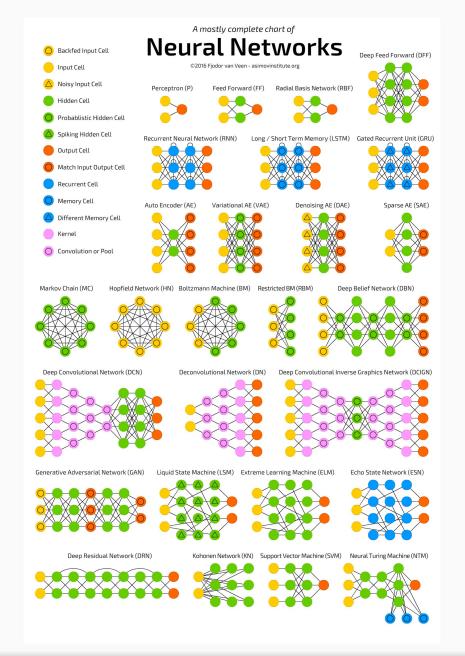
In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

RETWEETS LIKES 100 (C) 100 (C 272 506

Selecting algorithm & software: "Easy" choices



An ML algorithm "farm"



Source: Asimov Institute (2016)

The neural network zoo

• Always go for the simplest model you can afford

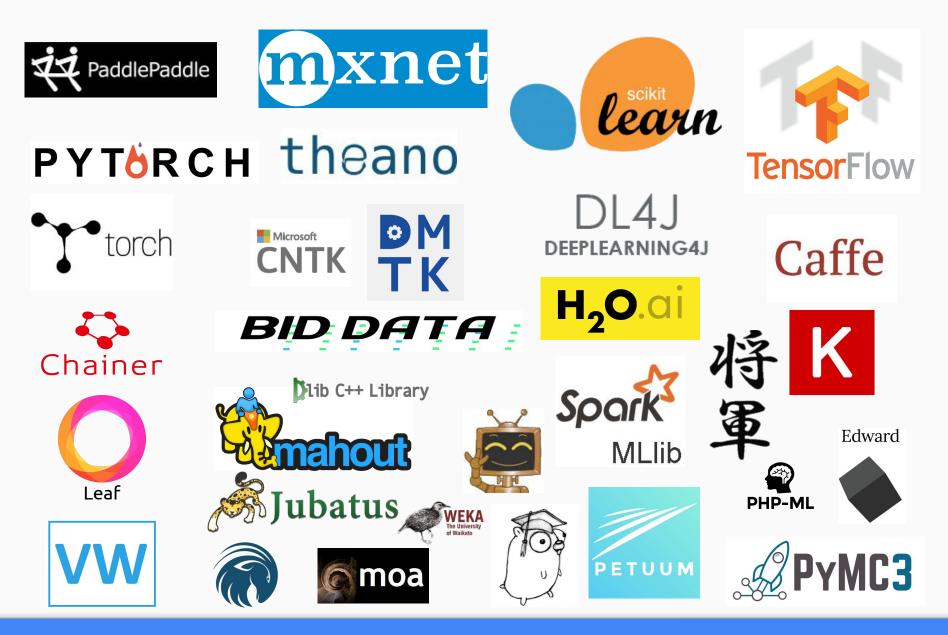
- Always go for the simplest model you can afford
 - \circ \quad Your first model is more about getting the infrastructure right

- Always go for the simplest model you can afford
 - Your first model is more about getting the infrastructure right
 - Simple models are usually interpretable. Interpretable models are easier to debug.

- Always go for the simplest model you can afford
 - Your first model is more about getting the infrastructure right
 - Simple models are usually interpretable. Interpretable models are easier to debug.
 - Complex model erode boundaries

- Always go for the simplest model you can afford
 - Your first model is more about getting the infrastructure right
 - Simple models are usually interpretable. Interpretable models are easier to debug.
 - Complex model erode boundaries
 - CACE principle: Changing Anything Changes Everything

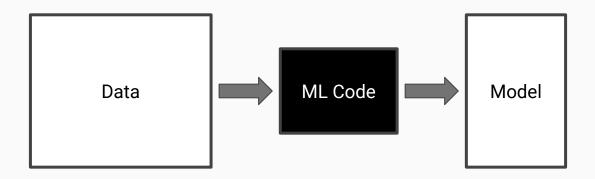
Selecting software



The ML software zoo

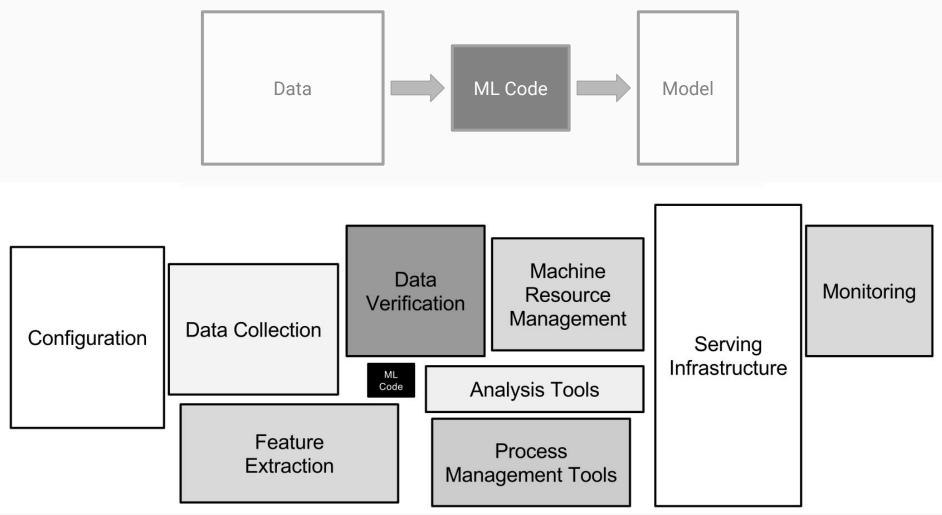
Your model vs. the world

What are the problems with ML systems?



Expectation

What are the problems with ML systems?



Sculley et al. (2015)

Reality

• Data dependencies

- Data dependencies
 - Unstable dependencies

- Data dependencies
 - Unstable dependencies
- Feedback loops

- Data dependencies
 - Unstable dependencies
- Feedback loops
 - Direct

- Data dependencies
 - Unstable dependencies
- Feedback loops
 - Direct
 - Indirect

Bringing it all together

Bringing it all together

- Define your problem as optimizing your objective function using data
- Determine (and monitor) the readiness of your data
- Don't spend too much time at first choosing an ML framework/algorithm
- Worry much more about what happens when your model meets the world.

Sources

- Google auto-replies: <u>Shared photos</u>, and <u>text</u>
- Silver et al. (2016): Mastering the game of Go
- Xing (2015): <u>A new look at the system, algorithm and theory foundations of Distributed ML</u>
- Lawrence (2017): Data readiness levels
- Asimov Institute (2016): <u>The Neural Network Zoo</u>
- Zinkevich (2017): <u>Rules of Machine Learning Best Practices for ML Engineering</u>
- Sculley et al. (2015): <u>Hidden Technical Debt in Machine Learning Systems</u>