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Formulating an ML problem

● Common aspects
○ Model (θ)
○ Data (D)

● Objective function: L(θ, D)
● Prior knowledge: r(θ)
● ML program: f(θ, D) = L(θ, D) +  r(θ)
● ML Algorithm: How to optimize f(θ, D)

Source: Xing (2015)
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● Data (D): Features and labels, xi, yi
● Model (θ): Logistic regression, parameters w

○ p(y|x, w) = Bernouli(y | sigm(wΤx))

● Objective function - L(D, θ): NLL(w) = Σ log(1 + exp(-y w
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Example: Improve retention at Twitter

● Goal: Reduce the churn of users on Twitter
● Assumption: Users churn because they don’t engage with the platform
● Idea: Increase the retweets, by promoting tweets more likely to be 

retweeted

● Data (D): Features and labels, xi, yi
● Model (θ): Logistic regression, parameters w

○ p(y|x, w) = Bernouli(y | sigm(wΤx))

● Objective function - L(D, θ): NLL(w) = Σ log(1 + exp(-y w
Τxi))

● Prior knowledge (Regularization):  r(w) = λ*wΤw
● Algorithm: Gradient Descent



Data problems



Data problems

● GIGO: Garbage In - Garbage Out
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Data readiness

● Problem: “Data” as a concept is hard to reason about.
● Goal: Make the stakeholders aware of the state of the data at all stages

Source: Lawrence (2017)
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Selecting algorithms



An ML algorithm “farm”

Source: scikit-learn.org



The neural network zoo

Source: Asimov 
Institute (2016)
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Selecting algorithms

● Always go for the simplest model you can afford
○ Your first model is more about getting the infrastructure right
○ Simple models are usually interpretable. Interpretable models are easier to debug.
○ Complex model erode boundaries

■ CACE principle: Changing Anything Changes Everything

Source: Sculley et al. (2015)



Selecting software



The ML software zoo

Leaf



Your model vs. the world



What are the problems with ML systems?

Data ML Code Model

Expectation



What are the problems with ML systems?

Data ML Code Model

Reality

Sculley et al. (2015)
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● Data dependencies
○ Unstable dependencies

● Feedback loops
○ Direct
○ Indirect

Things to watch out for

Sculley et al. (2015)
& Zinkevich (2017)
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Bringing it all together

● Define your problem as optimizing your objective function using data
● Determine (and monitor) the readiness of your data
● Don't spend too much time at first choosing an ML framework/algorithm
● Worry much more about what happens when your model meets the world.



Thank you.

@thvasilo
tvas@sics.se
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